A. Sketch the potential energy surfaces of HF in the ground state and excited state assuming that the dimensionless displacement is $\Delta = 3$. Label Δ on the sketch.

 Δ is the displacement along the nuclear coordinate. Note that the electron-phonon coupling S = $\Delta^2/2$ so S = 4.5.

B. Calculate the "stick spectrum" of the HF HOMO \rightarrow LUMO transition assuming the T = 0 K approximation and that the vibrational mode is a Franck-Condon active mode. Make a table shows the individual bands.

$$FC = \sum_{\nu=0}^{\infty} \frac{S^{\nu} e^{-S}}{\nu!} \delta(\varepsilon - \varepsilon_{0-0'} - \nu\hbar\omega)$$

n'	FC factor	Plugged-in value	numerical value
0'	e ^{-S}	e ^{-4.5}	0.011
1'	Se ^{-S}	4.5e ^{-4.5}	0.05
2'	$S^{2}e^{-S}/2$	20.25e ^{-4.5} /2	0.112
3'	$S^{3}e^{-S}/6$	91.125e ^{-4.5} /6	0.168
4'	$S^4e^{-S}/24$	410e ^{-4.5} /24	0.189
5'	$S^{5}e^{-S}/120$	1845e ^{-4.5} /120	0.170
6'	S ⁷ e ^{-S} /720	8303e ^{-4.5} /720	0.128

Solution: make a table to show the individual transitions

Note that for S=4.5, $1 \rightarrow 4'$ and $1 \rightarrow 5'$ bands are approximately equal in intensity.