A. Sketch the potential energy surfaces of HF in the ground state and excited state assuming that the dimensionless displacement is $\Delta=3$. Label Δ on the sketch.

Δ is the displacement along the nuclear coordinate.
Note that the electron-phonon coupling $S=\Delta^{2} / 2$ so $S=4.5$.
B. Calculate the "stick spectrum" of the HF HOMO \rightarrow LUMO transition assuming the $\mathrm{T}=0$ K approximation and that the vibrational mode is a Franck-Condon active mode. Make a table shows the individual bands.

$$
F C=\sum_{v=0}^{\infty} \frac{S^{v} e^{-S}}{v!} \delta\left(\varepsilon-\varepsilon_{0-0^{\prime}}-v \hbar \omega\right)
$$

Solution: make a table to show the individual transitions

n	FC factor	Plugged-in value	numerical value
0^{\prime}	$\mathrm{e}^{-\mathrm{S}}$	$\mathrm{e}^{-4.5}$	0.011
1^{\prime}	$\mathrm{Se}^{-\mathrm{S}}$	$4.5 \mathrm{e}^{-4.5}$	0.05
2^{\prime}	$\mathrm{S}^{2} \mathrm{e}^{-\mathrm{S}} / 2$	$20.25 \mathrm{e}^{-4.5} / 2$	0.112
3^{\prime}	$\mathrm{S}^{3} \mathrm{e}^{-\mathrm{S}} / 6$	$91.125 \mathrm{e}^{-4.5} / 6$	0.168
4^{\prime}	$\mathrm{S}^{4} \mathrm{e}^{-\mathrm{S}} / 24$	$410 \mathrm{e}^{-4.5} / 24$	0.189
5^{\prime}	$\mathrm{S}^{5} \mathrm{e}^{-\mathrm{S}} / 120$	$1845 \mathrm{e}^{-4.5} / 120$	0.170
6^{\prime}	$\mathrm{S}^{7} \mathrm{e}^{-\mathrm{S}} / 720$	$8303 \mathrm{e}^{-4.5} / 720$	0.128

Note that for $S=4.5,1 \rightarrow 4$ ' and $1 \rightarrow 5^{\prime}$ bands are approximately equal in intensity.

