Question

Which is an accurate expression of the boiling point elevation in terms of the activity of the solvent?

A.
$$\ln a_1 = \Delta_{vap} H/R(1/T - 1/T^*)$$

B. $a_2 = \Delta_{vap} H/R(1/T - 1/T^*)$
C. $RT^{*2}(M_1/1000g kg^{-1}) / \Delta_{vap} H$
D. $\mu_1^{soln} = \mu_1^* + RT \ln a_1$

Question

Which is an accurate expression of the boiling point elevation in terms of the activity of the solvent?

A.
$$\ln a_1 = \Delta_{vap} H/R(1/T - 1/T^*)$$

B. $a_2 = \Delta_{vap} H/R(1/T - 1/T^*)$
C. $RT^{*2}(M_1/1000g kg^{-1}) / \Delta_{vap} H$
D. $\mu_1^{soln} = \mu_1^* + RT \ln a_1$

Activity of the solute Molality of the solute Chemical potential (not boiling point elevation)

