Use of osmotic pressure to determine molar mass

A sample of 1.5 mg . of a protein of unknown molar mass is added to an osmometer. The solution volume is 1 mL . The solution height increases by 1 cm . The measurement temperature is 298 K . What is the molar mass of the protein?
A. 37,900
B. 39,700
C. 79,300
D. 97,300

Use of osmotic pressure to determine molar mass

A sample of 1.5 mg . of a protein of unknown molar mass is added to an osmometer. The solution volume is 1 mL . The solution height increases by 1 cm . The measurement temperature is 298 K . What is the molar mass of the protein?
A. 37,900

$$
\begin{aligned}
M & =\frac{w R T}{\Pi}=\frac{w R T}{\rho g h}=\frac{\left(1.5 \mathrm{~kg} / \mathrm{m}^{3}\right)(8.31 \mathrm{~J} / \mathrm{mol}-K)(298 \mathrm{~K})}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.01 \mathrm{~m})} \\
& =37.9 \mathrm{~kg} / \mathrm{mol} \\
& =37,900 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

B. 39,700
C. 79,300
D. 97,300

