Expansion following combustion

What volume of gas is produced if 50 grams of $\mathrm{C}_{3} \mathrm{H}_{8}$ is combusted at 373 K at 1 atm ? You may assume all molecules are in the vapor phase.

Expansion following combustion

What volume of gas is produced if 50 grams of
$\mathrm{C}_{3} \mathrm{H}_{8}$ is combusted? You may assume all molecules are in the vapor phase ($\mathrm{T}=373 \mathrm{~K}$).

Solution: Write down the balanced equation

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the change in number of moles of gas, $\Delta \mathrm{n}_{\text {gas }}$. Then calculate $\Delta \mathrm{V}$.

Expansion following combustion

What volume of gas is produced if 50 grams of
$\mathrm{C}_{3} \mathrm{H}_{8}$ is combusted? You may assume all molecules are in the vapor phase ($\mathrm{T}=373 \mathrm{~K}$).

Solution: Write down the balanced equation

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the change in number of moles of gas, $\Delta \mathrm{n}_{\text {gas }}$. Then calculate $\Delta \mathrm{V}$.
$\Delta \mathrm{n}_{\text {gas }}=\Sigma \mathrm{n}_{\text {products }}-\Sigma \mathrm{n}_{\text {reactants }}$
$\Delta \mathrm{n}_{\mathrm{gas}}=3+4-1-5=1$

Expansion following combustion

What volume of gas is produced if 50 grams of
$\mathrm{C}_{3} \mathrm{H}_{8}$ is combusted? ($T=373 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{~atm}$)
Solution: Calculate now many moles are in 50 grams of $\mathrm{C}_{3} \mathrm{H}_{8}$.

$$
n=\frac{m}{M_{m}}=\frac{50 \mathrm{gm}}{44 \mathrm{gm} / \mathrm{mol}}=1.14 \mathrm{~mol}
$$

Then use the ideal gas law to obtain the volume change.

$$
\begin{gathered}
\Delta V=\frac{\Delta n R T}{P}=\frac{(1.14 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(373 \mathrm{~K})}{1 \mathrm{~atm}} \\
\Delta V=34.8 \mathrm{~L}
\end{gathered}
$$

