Enthalpy of formation from combustion

The enthalpy of combustion $\Delta_{comb}H^o$ for propane, C_3H_8 , is -2220 kJ. What is Δ_fH^o of C_3H_8 ?

Enthalpy of formation from combustion

The enthalpy of combustion $\Delta_{comb}H^o$ for propane, C_3H_8 , is -2220 kJ. What is Δ_fH^o of C_3H_8 ?

Solution: Write down the balanced equation

$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

Look up the enthalpies of formation of the CO_2 and H_2O . Remember that the enthalpy of formation of O_2 is zero. The tabulated values of enthalpy are given at 298 K, Keep in mind that H_2O is in the liquid phase.

$$\Delta_f H(CO_2) = -393 \, kJ/mol$$

$$\Delta_f H(H_2 O) = -285 \, kJ/mol$$

Enthalpy of formation from combustion

The enthalpy of combustion, $\Delta_{comb}H^o$ for propane, C_3H_8 , is -2220 kJ. What is ΔH^o_f of C_3H_8 ?

Solution: Write down the balanced equation

$$C_{3}H_{8} + 5 O_{2} \rightarrow 3 CO_{2} + 4 H_{2}O$$

$$\Delta_{rxn}H = 3\Delta_{f}H(CO_{2}) + 4\Delta_{f}H(H_{2}O) - \Delta_{f}H(C_{3}H_{8})$$

$$\Delta_{f}H(C_{3}H_{8}) = 3\Delta_{f}H(CO_{2}) + 4\Delta_{f}H(H_{2}O) - \Delta_{rxn}H$$

$$\Delta_{f}H(C_{3}H_{8}) = 3(-393) + 4(-285) - (-2222)$$

$$\Delta_{f}H(C_{3}H_{8}) = -97 \text{ kJ/mol}$$