Heating of a fuel in an engine

Consider the fact that after combustion the octane fuel has been converted into CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the vapor phase. Assuming an average value of $\mathrm{c}_{\mathrm{p}}=33 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ for vapor produced by combustion, what is the final temperature if 12 microliters of octane are combusted? ? ($\rho_{\text {oct }}=0.7 \mathrm{gm} / \mathrm{cm}^{3}$)

Heating of a fuel in an engine

Consider the fact that after combustion the octane fuel has been converted into CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the vapor phase. Assuming an average value of $\mathrm{c}_{\mathrm{p}}=33 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ for vapor produced by combustion, what is the final temperature if 12 microliters of octane are combusted? ($\rho_{\text {oct }}=0.7 \mathrm{gm} / \mathrm{cm}^{3}$)

Solution: For the reaction in which all products are in the vapor phase we can write:

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\ell)+\frac{25}{2} \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(g)
$$

Heating of a fuel in an engine

Consider the fact that after combustion the octane fuel has been converted into CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the vapor phase. Assuming an average value of $\mathrm{c}_{\mathrm{p}}=33 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ for vapor produced by combustion, what is the final temperature if 12 microliters of octane are combusted? ($\rho_{\text {oct }}=0.7 \mathrm{gm} / \mathrm{cm}^{3}$) The difference in the number of moles is:

$$
\Delta n=9+8-12.5=4.5
$$

Thus, for each mole of octane combusted there will be 4.5 moles of gas to be heated. The number of moles of octane is obtained from:

$$
\begin{aligned}
& n=\frac{\rho V}{M_{m}}=\frac{\left(0.7 \mathrm{gm} / \mathrm{cm}^{3}\right)\left(1.2 \times 10^{-5} \mathrm{~L}\right)\left(1000 \frac{\mathrm{~cm}^{3}}{\mathrm{~L}}\right)}{114 \mathrm{gm} / \mathrm{mol}} \\
& =7.37 \times 10^{-5} \mathrm{~mol}
\end{aligned}
$$

Heating of a fuel in an engine

Consider the fact that after combustion the octane fuel has been converted into CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the vapor phase. Assuming an average value of $\mathrm{c}_{\mathrm{p}}=33 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ for vapor produced by combustion, what is the final temperature if 12 microliters of octane are combusted? ($\rho_{\text {oct }}=0.7 \mathrm{gm} / \mathrm{cm}^{3}$) Therefore, the total number of moles to be heated is:

$$
n_{\text {vapor }}=3.31 \times 10^{-4} \mathrm{~mol}
$$

The total heat is obtained from the molar heat of combustion of octane, which is $-5430 \mathrm{~kJ} / \mathrm{mol}$.

$$
q=n \Delta H^{o}=\left(7.37 \times 10^{-5} \mathrm{~mol}\right)(-5430 \mathrm{~kJ} / \mathrm{mol})=400 \mathrm{~J}
$$

Heating of a fuel in an engine

Consider the fact that after combustion the octane fuel has been converted into CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the vapor phase. Assuming an average value of $\mathrm{c}_{\mathrm{p}}=33 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ for vapor produced by combustion, what is the final temperature if 12 microliters of octane are combusted? ($\rho_{\text {oct }}=0.7 \mathrm{gm} / \mathrm{cm}^{3}$) Finally, the temperature difference is given by

$$
\begin{gathered}
\Delta T=\frac{q}{n_{\text {vapor }} c_{p}}=\frac{400 \mathrm{~J}}{\left(3.31 \times 10^{-4} \mathrm{~mol}\right)(225.7 \mathrm{~J} / \mathrm{molK})} \\
\Delta T=5350 \mathrm{~K} \text { and } T_{f}=5650 \mathrm{~K}
\end{gathered}
$$

For the very small explosion that takes place there is a very high local temperature. However, this temperature is rapidly lowered by transfer to the surrounding metal.

