

Enthalpy of Reaction

How many liters of methane must be burned to produce 1 kg of cement (CaO) ? The cement reaction is:

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

The combustion of methane is:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

The thermodynamic data are:

$$
\begin{gathered}
\Delta_{f} H^{o}\left(\mathrm{CO}_{2}\right)=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{f} H^{o}\left(\mathrm{H}_{2} \mathrm{O}\right)=-286 \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{f} H^{o}\left(\mathrm{CH}_{4}\right)=-74.9 \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{f} H^{o}(\mathrm{CaO})=-634.9 \mathrm{~kJ} / \mathrm{mol} \\
\Delta_{f} H^{o}\left(\mathrm{CaCO}_{3}\right)=-1207.9 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

