Reverse osmosis technology

Given the colligative molarity of 1.1 M in sea water How much energy (in Joules) will it take to purify a liter of sea water by reverse osmosis?

Reverse osmosis technology

Given the colligative molarity of 1.1 M in sea water How much energy (in Joules) will it take to purify a liter of sea water by reverse osmosis?
Solution:
First we calculate the required pressure using the van't Hoff Equation:

$$
\begin{gathered}
\Pi=c R T=(1.1 \mathrm{M})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(298 \mathrm{~K}) \\
\Pi=c R T=26.9 \mathrm{~atm}
\end{gathered}
$$

Then we calculate the pressure-volume product for 1 liter.

$$
\text { ПV }=26.9 L-\operatorname{atm}\left(101.325 \frac{\mathrm{~J}}{\text { Latm }}\right)=2725 \text { Joules }
$$

Reverse osmosis technology

Given the colligative molarity of 1.1 M in sea water How much energy (in Joules) will it take to purify a liter of sea water by reverse osmosis?
In case you do not know, there is a simple trick for remembering the conversion from L-atm to Joules. You may know (and you can always look up even on a test) that there are two values of the ideal gas constant, R. These are:

$$
R=8.31 \frac{\mathrm{~J}}{\mathrm{molK}}=0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}
$$

Their ratio gives the needed conversion factor:

$$
101.325 \frac{\mathrm{~J}}{\text { Latm }}=\frac{8.31 \frac{\mathrm{~J}}{\mathrm{molK}}}{0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}}
$$

