Chemistry 201

Vapor pressure

NC State University

Concept: vapor pressure

- Vapor pressure is an equilibrium property that determines the relative pressure of a gas above a liquid or solid.
- Vapor pressure increases with temperature. It defines a curve on a pressure-temperature phase diagram.
- The vapor pressure of a solvent can be reduced by a solute according to the equation.
$P_{1}=x_{1} P_{1}{ }^{*}$
Here x is the mole fraction of the solvent and
$P_{1}{ }^{*}$ is the vapor pressure of the pure solvent.

What causes vapor trails above a cold lake?

What causes dew to form?

Salt water has higher conductivity than $\mathrm{H}_{2} \mathrm{O}$

Ideal solutions: Raoult’s law

Raoult's law states
$P_{j}=x_{j} P_{j}{ }^{*}$
where $P_{j}{ }^{*}$ is the vapor pressure of pure component j. The vapor pressure of component j in an ideal solution is given by the product of its mole fraction and $P_{j}{ }^{*}$.

There are two cases we can consider.

1. Volatile solute - both solvent and solute are found in the vapor above the solution. A solution of ethanol in is an example.
2. Non-volatile solute - only the solvent has a vapor pressure. The solute does not contribute to the pressure so there is a "vapor pressure lowering".

Vapor pressure above solution

$P_{1}{ }^{*}$

$$
\begin{aligned}
& P_{1}=x_{1} P_{1}{ }^{*} \\
& P_{2}=x_{2} P_{2}^{*}
\end{aligned}
$$

Vapor pressure above solution of non-volatile solute

$P_{1}{ }^{*}$

$P_{1}=x_{1} P_{1}{ }^{*}$

Two component phase diagrams

The total vapor pressure over an ideal solution is given by

$$
\begin{aligned}
P_{\text {total }} & =P_{1}+P_{2}=x_{1} P_{1}{ }^{*}+x_{2} P_{2}^{*}=\left(1-x_{2}\right) P_{1}^{*}+x_{2} P_{2}^{*} \\
& =P_{1}^{*}+x_{2}\left(P_{2}^{*}-P_{1}^{*}\right)
\end{aligned}
$$

A plot of the total pressure has the form of a straight line.

Concept: phase diagram

Temperature

Effect of solutes:
 vapor pressure reduction

20.0 g of CaCl_{2} are dissolved in 100.0 g of $\mathrm{H}_{2} \mathrm{O}$.

Density $=1.147 \mathrm{~g} / \mathrm{mL}$. Given that the vapor pressure of pure water is 0.034 atm at $25^{\circ} \mathrm{C}$, what is the vapor pressure of the solution?

Effect of solutes:
 vapor pressure reduction

20.0 g of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ are dissolved in 100.0 g of $\mathrm{H}_{2} \mathrm{O}$. Density $=1.067 \mathrm{~g} / \mathrm{mL}$. Given that the vapor pressure of pure water is 0.034 atm at $25^{\circ} \mathrm{C}$, what is the vapor pressure of the solution?
Solution: calculate the mole fraction of the solute.

$$
\begin{aligned}
n_{\text {sucrose }} & =\frac{m}{M_{m}}=\frac{20 \mathrm{~g}}{342 \mathrm{~g} / \mathrm{mol}}=0.058 \mathrm{moles} \\
n_{\text {water }} & =\frac{m}{M_{m}}=\frac{100 \mathrm{~g}}{18 \mathrm{~g} / \mathrm{mol}}=5.55 \mathrm{moles}
\end{aligned}
$$

Effect of solutes:
 vapor pressure reduction

20.0 g of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ are dissolved in 100.0 g of $\mathrm{H}_{2} \mathrm{O}$. Density $=1.067 \mathrm{~g} / \mathrm{mL}$. Given that the vapor pressure of pure water is 0.034 atm at $25^{\circ} \mathrm{C}$, what is the vapor pressure of the solution?
Solution: calculate the mole fraction of the solute.

$$
\begin{aligned}
x_{\text {sucrose }} & =\frac{n_{\text {sucrose }}}{n_{\text {sucrose }}+n_{\text {water }}} \\
x_{\text {sucrose }} & =\frac{0.058}{5.55+0.058}=0.01
\end{aligned}
$$

Effect of solutes:
 vapor pressure reduction

20.0 g of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ are dissolved in 100.0 g of $\mathrm{H}_{2} \mathrm{O}$.

Density $=1.067 \mathrm{~g} / \mathrm{mL}$. Given that the vapor pressure of pure water is 0.034 atm at $25^{\circ} \mathrm{C}$, what is the vapor pressure of the solution?
Solution: Use Raoult's law to calculate the vapor pressure.

$$
\begin{gathered}
P_{\text {water }}=x_{\text {water }} P_{\text {water }}^{*} \\
P_{\text {water }}=(0.99)(0.0340)=0.0337
\end{gathered}
$$

Water-ethanol solutions: The breath-a-lyzer

Assuming that water and ethanol for an ideal mixture, what is the vapor pressure of ethanol above a solution of 0.08% ethanol by mass in water (the legal limit for blood alcohol level)? Data: $\mathrm{P}^{*} \mathrm{EtOH}=0.171 \mathrm{~atm}$ Solution: The mole fraction

$$
x_{E}=\frac{n_{E}}{n_{E}+n_{W}}=\frac{m_{E} / M_{m, E}}{m_{E} / M_{m, E}+m_{W} / M_{m, W}}
$$

is related to mass fraction

$$
f_{E}=\frac{m_{E}}{m_{E}+m_{W}}
$$

by

Water-ethanol solutions: The breath-a-lyzer

0.08% ethanol by mass in water $. \mathrm{P}_{\text {EtOH }}=0.171 \mathrm{~atm}$ Solution: The mole fraction is related to mass fraction by

$$
\begin{gathered}
f_{E}\left(m_{E}+m_{W}\right)=m_{E} \\
m_{W}=\frac{\left(1-f_{E}\right)}{f_{E}} m_{E} \\
x_{E}=\frac{m_{E} / M_{m, E}}{m_{E} / M_{m, E}+\frac{\left(1-f_{E}\right)}{f_{E}} m_{E} / M_{m, W}} \\
x_{E}=\frac{1}{1+\frac{\left(1-f_{E}\right) M_{m, E}}{f_{E} M_{m, W}}}
\end{gathered}
$$

Water-ethanol solutions: The breath-a-lyzer

0.08% ethanol by mass in water $. \mathrm{P}_{\text {EtOH }}=0.171 \mathrm{~atm}$ Solution: The mole fraction is related to mass fraction by

$$
\begin{gathered}
x_{E}=\frac{1}{1+\frac{(1-0.0008) 46}{(0.0008) 18}}=0.0003 \\
P_{E}=x_{E} P_{E}^{*} \\
P_{E}=(0.0003)(0.171 \mathrm{~atm})=5 \times 10^{-4} \mathrm{~atm}
\end{gathered}
$$

