Mass percentages of NaHCO_{3}

Bicarbonate of soda $\left(\mathrm{NaHCO}_{3}\right)$ is a useful compound in for neutralizing acids. Find the mass percentages of (mass \%) of $\mathrm{Na}, \mathrm{H}, \mathrm{C}$ and O in sodium hydrogen carbonate.

Mass percentages of NaHCO_{3}

Bicarbonate of soda $\left(\mathrm{NaHCO}_{3}\right)$ is a useful compound in for neutralizing acids. Find the mass percentages of (mass \%) of $\mathrm{Na}, \mathrm{H}, \mathrm{C}$ and O in sodium hydrogen carbonate.

Solution: Step 1. Determine the molecular mass and the masses of each of the elements.

Step 2. Calculate the ratios of the elements to the molar mass x 100\%.

Mass percentages of NaHCO_{3}

Bicarbonate of soda $\left(\mathrm{NaHCO}_{3}\right)$ is a useful compound in for neutralizing acids. Find the mass percentages of (mass \%) of $\mathrm{Na}, \mathrm{H}, \mathrm{C}$ and O in sodium hydrogen carbonate.
Solution: Step 1. Determine the molecular mass and the masses of each of the elements.

$$
M_{m, \mathrm{NaHCO}}^{3} 1023+1+12+3(16)=84 a \mathrm{amu}
$$

Na, H and C are trivial since there is only one of each.
For O we have

$$
M_{m, O_{3}}=3(16)=48 \mathrm{amu}
$$

Mass percentages of NaHCO_{3}

Bicarbonate of soda $\left(\mathrm{NaHCO}_{3}\right)$ is a useful compound in for neutralizing acids. Find the mass percentages of (mass \%) of $\mathrm{Na}, \mathrm{H}, \mathrm{C}$ and O in sodium hydrogen carbonate.
Step 2. Calculate the ratios of the elements to the molar mass x 100\%.

For Na : \% Na $=23 / 84$ (100\%) $=27.4 \%$
For H : \% H = 1/84 (100\%) = 1.2%
For C: \% C = 12/84 (100\%) = 14.3 \%
For O: \% O = 48/84 (100\%) = 5714%

