Counting atoms and molecules

A. How many individual H atoms are contained in 10.0 gm of $\mathrm{CH}_{3} \mathrm{OH}$?
B. What mass of $\mathrm{CH}_{3} \mathrm{OH}$ contains 1.75 mol of H atoms?

Counting atoms and molecules

A. How many individual $\mathrm{CH}_{3} \mathrm{OH}$ molecules are contained in 10.0 g of $\mathrm{CH}_{3} \mathrm{OH}$?
Solution: 1. Determine the molar mass of $\mathrm{CH}_{3} \mathrm{OH}$.

$$
\mathrm{M}_{\mathrm{m}}=12+16+4=32 \mathrm{grams} / \mathrm{mole} .
$$

2. Convert to moles:
$\mathrm{n}=\mathrm{m} / \mathrm{M}_{\mathrm{m}}=(10$ grams $) /(32$ grams $/ \mathrm{mole})=0.3125$ moles
This corresponds to 1.88×10^{23} molecules.

Counting atoms and molecules

B. What mass of $\mathrm{CH}_{3} \mathrm{OH}$ contains 1.75 mol of H atoms?

Solution: The mole ratio of H : $\mathrm{CH}_{3} \mathrm{OH}$ is $4: 1$ so the number of moles of $\mathrm{CH}_{3} \mathrm{OH}$ is

$$
n_{C H 3 о H}=\frac{n_{H}}{4}=\frac{1.75 \text { moles }}{4}=0.4375 \text { moles }
$$

The mass is

$$
\mathrm{m}=\mathrm{nM} \mathrm{~m}_{\mathrm{m}}=(0.4375 \mathrm{moles})(32 \mathrm{grams} / \mathrm{mole})=14 \text { grams }
$$

