Determine the limiting reagent in a reaction where 12 grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with 28 grams of $\mathrm{Na}_{3} \mathrm{PO}_{4}$. Please be sure to balance the equation.
${ }_{-} \mathrm{Ca}(\mathrm{OH})_{2}(a q)+{ }_{-} \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow{ }_{-} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+_{_} \mathrm{NaOH}(a q)$

Determine the limiting reagent in a reaction where 12 grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with 28 grams of $\mathrm{Na}_{3} \mathrm{PO}_{4}$. Please be sure to balance the equation.
${ }_{-} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})++_{-} \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow{ }_{-} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+_{-} \mathrm{NaOH}(\mathrm{aq})$
Solution: Step 1. Balance the chemical equation.

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaOH}
$$

Step 2. calculate the number of moles of each reactant:

$$
\begin{aligned}
& n_{\mathrm{Ca}(\mathrm{OH})_{2}}=\frac{\mathrm{mofCa}(\mathrm{OH})_{2}}{M_{m} \mathrm{ofCa}(\mathrm{OH})_{2}}=\frac{12 \mathrm{gm}}{\left(74 \frac{\mathrm{gm}}{\mathrm{~mol}}\right)}=0.162 \mathrm{moles} \\
& n_{\mathrm{Na}_{3} \mathrm{PO}_{4}}=\frac{\mathrm{mofNa}}{\mathrm{~m}_{3} \mathrm{PO}_{4}} \\
& M_{m} \mathrm{ofNa} 3 \mathrm{PO}_{4}
\end{aligned}=\frac{28 \mathrm{gm}}{\left(164 \frac{\mathrm{gm}}{\mathrm{~mol}}\right)}=0.164 \mathrm{moles} \mathrm{~s}
$$

Determine the limiting reagent.

Step 3. Compare to the stoichiometric value. One way to do this is to ask whether the actual ratio of $\mathrm{Ca}(\mathrm{OH})_{2}: \mathrm{Na}_{3} \mathrm{PO}_{4}$ is greater than the stoichiometric ratio of $3: 2$. If it is greater than this means that there is excess $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is limiting. The ratio is:

$$
\text { Actual Ratio }=\frac{n_{\mathrm{Ca}(\mathrm{OH})_{2}}}{n_{\mathrm{Na}_{3} \mathrm{PO}_{4}}}=\frac{0.162}{0.164}=0.99
$$

Since this actual ratio is less than the stoichiometric ratio we conclude that $\mathrm{Ca}(\mathrm{OH})_{2}$ is limiting.

