Determine the limiting reagent in a reaction where 20 grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is in contact with 8 grams of Al . Please be sure to balance the equation.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+\mathrm{Al}(s) \rightarrow \mathrm{Fe}(\ell)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)
$$

Solution: Step 1. Balance the chemical equation.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+2 \mathrm{Al}(s) \rightarrow 2 \mathrm{Fe}(\ell)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)
$$

Step 2. calculate the number of moles of each reactant:

$$
n_{\mathrm{Fe}_{2} \mathrm{O}_{3}}=\frac{\mathrm{mofFe} \mathrm{O}_{3}}{M_{m} \text { of } \mathrm{Fe}_{2} \mathrm{O}_{3}}=\frac{20 \mathrm{gm}}{\left(159.6 \frac{\mathrm{gm}}{\mathrm{~mol}}\right)}=0.125 \mathrm{moles}
$$

$$
n_{A l}=\frac{m o f A l}{M_{m} O f A l}=\frac{8 \mathrm{gm}}{\left(27 \frac{g m}{m o l}\right)}=0.296 \text { moles }
$$

Determine the limiting reagent.

Step 3. Compare the stoichiometric value. One Way to do this is to ask whether the actual ratio of $\mathrm{Al}: \mathrm{Fe}_{2} \mathrm{O}_{3}$ is greater than the stoichiometric ratio of 2. If it is greater than this means that there is excess Al and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is limiting. The ratio is:

$$
\text { Ratio }=\frac{n_{A l}}{n_{\mathrm{Fe}_{2} \mathrm{O}_{3}}}=\frac{0.296}{0.125}=2.368
$$

We conclude that $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is limiting.

