Determine the theoretical yield for the combustion of octane if 1 liter of octane fuel is mixed with 1420 liters of O_{2}. Please first balance the chemical equation. [The density of octane is $0.7 \mathrm{gm} / \mathrm{cm}^{3}$]

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\ell)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

Solution: Step 1. Balance the chemical equation:

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\ell)+\frac{25}{2} \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Step 2. calculate the number of moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ and O_{2} as reactants.

$$
n_{1}=\frac{\rho_{1} \mathrm{~V}_{1}}{\mathrm{M}_{\mathrm{m}, 1}}=\frac{(0.70)(1)(1000)}{114}=6.14 \mathrm{~mol}
$$

The factor of 1000 converts from cm^{3} to L .

Determine the theoretical yield for the combustion of octane if 1 liter of octane fuel is mixed with 1420 liters of O_{2}.

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\ell)+\frac{25}{2} \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Step 2 (contd.). Let's conduct a unit analysis of the expression we used on the previous slide.

$$
n_{1}=\frac{\rho_{1} \mathrm{~V}_{1}}{\mathrm{M}_{\mathrm{m}, 1}}=\frac{\left(\mathrm{gm} / \mathrm{cm}^{3}\right)(\mathrm{L})\left(\mathrm{cm}^{3} / \mathrm{L}\right)}{\mathrm{gm} / \mathrm{mol}}=\mathrm{mol}
$$

And of course the molar mass of octane is

$$
M_{m}=8(12)+18=114 \mathrm{amu}
$$

Determine the theoretical yield for the combustion of octane if 1 liter of octane fuel is mixed with 1420 liters of O_{2}.

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\ell)+\frac{25}{2} \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Step 2 (contd.). calculate the number of moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ and O_{2} as reactants.

$$
\begin{gathered}
n_{1}=\frac{\rho_{1} \mathrm{~V}_{1}}{\mathrm{M}_{\mathrm{m}, 1}}=\frac{(0.70)(1)(1000)}{114}=6.14 \mathrm{~mol} \\
n_{2}=\frac{P V_{2}}{R T}=\frac{(1 \mathrm{~atm})(1420 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(298 \mathrm{~K})}=58.1 \mathrm{moles}
\end{gathered}
$$

Determine the theoretical yield for the combustion of octane if 1 liter of octane fuel is mixed with 1420 liters of O_{2}.

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\ell)+\frac{25}{2} \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Step 3. Compare the actual molar ratio to the stoichiometry

$$
\text { Actual }=\frac{n_{2}}{\mathrm{n}_{1}}=\frac{58.1}{6.14}=9.46
$$

The stoichiometry requires a ratio of 12.5 . We will run out of O_{2} before the combustion is complete. The ratio of the actual to theoretically required O_{2} is

$$
\text { Yield }=\frac{9.46}{12.5}=0.756=75.6 \%
$$

