Each year plants fix 1.4 billion tons of CO_{2}.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

Given that the concentration of CO_{2} is 380 ppm and the pressure of CO_{2} is $3.8 \times 10^{-4} \mathrm{~atm}$ at 298 K . Given that the mass of the atmosphere is $5 \times 10^{18} \mathrm{~kg}$, calculate the mass of carbon that would be fixed as glucose if all of the CO_{2} were taken up by plants.

Each year plants fix 1.4 billion tons of CO_{2}.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

given that the concentration of CO_{2} is 380 ppm and the pressure of CO_{2} is $3.8 \times 10^{-4} \mathrm{~atm}$ at 298 K .
Given that the mass of the atmosphere is $5 \times 10^{18} \mathrm{~kg}$, calculate the mass of carbon that would be fixed as glucose if all of the CO_{2} were taken up by plants.
Solution: The total mass of CO_{2} is

$$
\begin{gathered}
m_{C O_{2}}=\left(3.8 \times 10^{-4}\right)\left(5 \times 10^{21} \mathrm{grams}\right) \\
m_{C O_{2}}=1.9 \times 10^{18} \mathrm{grams}
\end{gathered}
$$

Convert this mass to moles

$$
n_{\mathrm{CO}_{2}}=\frac{1.9 \times 10^{18} \mathrm{grams}}{44 \mathrm{grams} / \mathrm{mole}}=4.32 \times 10^{16} \text { moles }
$$

Each year plants fix 1.4 billion tons of CO_{2}.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

Given that the concentration of CO_{2} is 380 ppm and The pressure of CO_{2} is $3.8 \times 10^{-4} \mathrm{~atm}$ at 298 K . Given that the mass of the atmosphere is $5 \times 10^{18} \mathrm{~kg}$, calculate the mass of carbon that would be fixed as glucose if all of the CO_{2} were taken up by plants. Calculate the molar mass of glucose:

$$
M_{C_{6} H_{12} O_{6}}=6(12)+12+6(16)=180 \mathrm{~g} / \mathrm{mol}
$$

Calculate the grams of glucose using the molar ratio Of 1:6

$$
m_{C_{6} H_{12} O_{6}}=\frac{\left(4.32 \times 10^{16} \mathrm{moles}\right)\left(180 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)}{6}
$$

The mass is 1.30×10^{18} grams or 1.3 trillion tons.

