A high school student wants to design a bottle rocket that produces $50 \mathrm{~L}^{\text {of } \mathrm{CO}_{2} \text {. Given that the }}$ densities of NaHCO_{3} and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH}$ are 2.2 and $1.05 \mathrm{gm} / \mathrm{cm}^{3}$, what volume is needed for the fuel compartment?
Solution: Step 1. calculate the number of moles of CO_{2} to be produced.

$$
n=\frac{P V}{R T}=\frac{(1 \mathrm{~atm})(50 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(298 \mathrm{~K})}=2 \mathrm{moles}
$$

Step 2. Determine the masses of the reactants. $m_{\mathrm{NaHCO}_{3}}=n M_{m}=(2 \mathrm{~mol})\left(84 \frac{\mathrm{gm}}{\mathrm{mol}}\right)=168 \mathrm{gm}$ $m_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}}=n M_{m}=(2 \mathrm{~mol})\left(60 \frac{\mathrm{gm}}{\mathrm{mol}}\right)=120 \mathrm{gm}$

What volume is needed for the fuel compartment? Solution: Step 3. Calculate the volume of each reactant. We use the density of each reactant.

$$
\begin{gathered}
V_{\mathrm{NaHCO}_{3}}=\frac{m}{\rho}=\frac{168 \mathrm{gm}}{2.2 \mathrm{gm} / \mathrm{cm}^{3}}=76.4 \mathrm{~cm}^{3} \\
V_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}}=\frac{m}{\rho}=\frac{120 \mathrm{gm}}{1.05 \mathrm{gm} / \mathrm{cm}^{3}}=114.3 \mathrm{~cm}^{3}
\end{gathered}
$$

The sum is $\mathrm{V}_{\text {total }}=190.7 \mathrm{~cm}^{3}$.

