By Henry's law we know that CO_{2} will dissolve in $\mathrm{H}_{2} \mathrm{O}$ at a mole fraction of $\mathrm{x}_{\mathrm{CO}_{2}}=1.2 \times 10^{-5}$. Calculate the molarity of dissolved CO_{2} under these conditions.

By Henry's law we know that CO_{2} will dissolve in $\mathrm{H}_{2} \mathrm{O}$ at a mole fraction of $\mathrm{X}_{\mathrm{CO}_{2}}=1.2 \times 10^{-5}$. Calculate the molarity of dissolved CO_{2} under these conditions.

Solution: This solution is very dilute. Therefore, we are in the limit $x_{1} \sim 1$ for the solvent. Therefore,

$$
c_{2}=x_{2}(55.56 M)
$$

which yields

$$
c_{2}=\left(1.2 \times 10^{-5}\right)(55.56 M)=6.67 \times 10^{-4} M
$$

