Determine the mole fraction of a solution of 25% ethylene glycol $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ by volume in water. The density of antifreeze is $1.12 \mathrm{gm} / \mathrm{cm}^{3}$.

Determine the mole fraction of a solution of 25\% ethylene glycol $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ by volume in water. The density of antifreeze is $1.12 \mathrm{gm} / \mathrm{cm}^{3}$.

Solution: We can build on the previous calculation. We determined that the solution is 6 molal. Therefore, the total number of moles (ethylene glycol and water) is:

$$
n_{C_{2} O_{2} H_{6}}+n_{H_{2} \mathrm{O}}=6+55.6=61.6 \mathrm{~mol}
$$

The mole fraction of ethylene glycol is

$$
x_{C_{2} \mathrm{O}_{2} \mathrm{H}_{6}}=\frac{n_{C_{2} \mathrm{O}_{2} \mathrm{H}_{6}}}{n_{C_{2} \mathrm{O}_{2} \mathrm{H}_{6}}+n_{\mathrm{H}_{2} \mathrm{O}}}=\frac{6}{61.6}=0.097
$$

