Calculate the mole fraction of ethanol in octane in a 10\% by volume mixture (like you would purchase at the gas pump). The densities of octane and ethanol are 0.702 and $0.789 \mathrm{gm} / \mathrm{cm}^{3}$, respectively.

Calculate the mole fraction of ethanol in octane in a 10% by volume mixture (like you would purchase at the gas pump). The densities of octane and ethanol are 0.702 and $0.789 \mathrm{gm} / \mathrm{cm}^{3}$, respectively.

Solution: This problem involves a new conversion since we did not discuss volume conversions. However, the principle is the same. We can write the number of moles as:

$$
n_{2}=\rho_{2} V_{2} / M_{m, 2}
$$

Where ρ_{2} and V_{2} are the densty and volume of the solute. Since

$$
\mathrm{x}_{2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}
$$

Calculate the mole fraction of ethanol in octane in a 10% by volume mixture.

We can substitute in the expressions for solvent and solute to find

$$
x_{2}=\frac{\rho_{2} V_{2} / M_{m, 2}}{\rho_{1} V_{1} / M_{m, 1}+\rho_{2} V_{2} / M_{m, 2}}
$$

Where for octane

$$
\rho_{1}=0.702 \mathrm{gm} / \mathrm{cm}^{3}
$$

and for ethanol

$$
\rho_{2}=0.789 \frac{\mathrm{gm}}{\mathrm{~cm}^{3}}
$$

Then we assume that the volumes are equal to the volume fractions. This is equivalent to assuming that we have 1 L of solution. The total volume cancels.

Calculate the mole fraction of ethanol in octane in a 10\% by volume mixture.
The most convenient way to write this is to solve for the numbers of moles first. For octane

$$
n_{1}=\frac{\rho_{1} \mathrm{~V}_{1}}{\mathrm{M}_{\mathrm{m}, 1}}=\frac{(0.702)(0.9)}{114}=0.005542
$$

And for ethanol

$$
n_{2}=\frac{\rho_{2} V_{2}}{\mathrm{M}_{\mathrm{m}, 2}}=\frac{(0.789)(0.1)}{46}=0.001715
$$

The mole fraction is:

$$
x_{2}=\frac{0.001715}{0.005542+0.001715}=0.236
$$

In other words the fuel you purchase is nearly 25\% ethanol on a per mole basis.

