Calculate the mole fraction of ethanol in octane in a 10% by mass mixture. You may assume that the density of the mixture is $0.71 \mathrm{gm} / \mathrm{cm}^{3}$.

Calculate the mole fraction of ethanol in octane in a 10% by mass mixture. You may assume that the density of the mixture is $0.71 \mathrm{gm} / \mathrm{cm}^{3}$.

Solution: This problem involves conversion of a mass fraction. Since volume does not enter in to the solution the density is irrelevant. Instead, we can write

$$
\mathrm{x}_{2}=\frac{\mathrm{mf}_{2} / \mathrm{M}_{\mathrm{m}, 2}}{\mathrm{mf}_{1} / \mathrm{M}_{\mathrm{m}, 1}+\mathrm{mf}_{2} / \mathrm{M}_{\mathrm{m}, 2}}
$$

Where mf_{2} and mf_{2} are the mass fractions of solvent and solute, respectively. $\mathrm{M}_{\mathrm{m}, 1}$ and $\mathrm{M}_{\mathrm{m}, 2}$ are the molar masses.

Calculate the mole fraction of ethanol in octane in a 10% by mass mixture.

Upon substitution we find

$$
0.215=\frac{0.1 / 46}{0.9 / 114+0.1 / 46}
$$

Where we have made the calculation of the molar masses for octane

$$
\mathrm{M}_{\mathrm{m}, 1}=8(12)+18=114 \mathrm{amu}
$$

and ethanol

$$
M_{m, 2}=2(12)+16+6=46 a m u
$$

