Each year plants fix 1.4 billion tons of CO_{2}.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

Given that the concentration of CO_{2} is 380 ppm and The pressure of $\mathrm{H}_{2} \mathrm{O}$ is 0.034 atm at 298 K , which is the limiting reagent?

Each year plants fix 1.4 billion tons of CO_{2}.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

Given that the concentration of CO_{2} is 380 ppm and The pressure of $\mathrm{H}_{2} \mathrm{O}$ is 0.034 atm at 298 K , which is the limiting reagent?
Solution: First, we need to balance the chemical equation:

$$
6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}
$$

We have established that the mole ratio of CO_{2} to $\mathrm{H}_{2} \mathrm{O}$ is $1: 1$. Now, we need to determine which pressure is the smallest to find the limiting reagent. We can use ppm to calculate mole fraction.

$$
x_{C O_{2}}=380 \times 10^{-6}=3.8 \times 10^{-4}
$$

and Dalton's law to obtain the pressure:

$$
P_{C O_{2}}=x_{C O_{2}} P_{\text {total }}=\left(3.80 \times 10^{-4}\right)(1 \mathrm{~atm})
$$

Each year plants fix 1.4 billion tons of CO_{2}.

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}
$$

Given that the concentration of CO_{2} is 380 ppm and The pressure of $\mathrm{H}_{2} \mathrm{O}$ is 0.034 atm at 298 K , which is the limiting reagent?
Solution: Thus, we need to compare
$\mathrm{CO}_{2}: P_{\mathrm{CO}_{2}}=3.8 \times 10^{-4} \mathrm{~atm}$
$\mathrm{H}_{2} \mathrm{O}: P_{\mathrm{H}_{2} \mathrm{O}}=0.034 \mathrm{~atm}$
Hence, CO_{2} is the limiting reagent.

Dalton's law

Dalton's law states that the partial pressure of a gas in a mixture is equal to its mole fraction times the total pressure.

$$
P_{i}=x_{i} P_{\text {total }}
$$

For example, we know that the atmosphere is 20% O_{2}. This is the same thing as saying that the mole fraction of O_{2} is 0.2 . Since the total pressure of the atmosphere is 1 atm at sea level, we conclude that

$$
P_{O_{2}}=0.2 \mathrm{~atm}
$$

