$$
\begin{aligned}
& \text { Cement production } \\
& \mathrm{CaCO}_{3}=\mathrm{CaO}+\mathrm{CO}_{2}
\end{aligned}
$$

6% of the world's CO_{2} comes from cement factories.

Assuming 840 million tons of CO_{2} gas are emitted each year from cement factories, what mass of CaCO_{3} is consumed to make cement?

$$
\mathrm{CaCO}_{3}=\mathrm{CaO}+\mathrm{CO}_{2}
$$

Assuming 840 million tons of CO_{2} gas are emitted Each year from cement factors, what mass of CaCO_{3} is consumed to make cement?

$$
\mathrm{CaCO}_{3}=\mathrm{CaO}+\mathrm{CO}_{2}
$$

Solution: Step 1.The stoichiometry is easy here.
It is $1: 1$. So we can get the number of moles of CO_{2},

$$
n_{\mathrm{CO}_{2}}=\frac{840 \times 10^{12} \mathrm{grams}}{44 \mathrm{grams} / \mathrm{mole}}
$$

which is 1.9×10^{13} moles.

Assuming 840 million tons of CO_{2} gas are emitted each year from cement factors, what mass of CaCO_{3} is consumed to make cement?

$$
\mathrm{CaCO}_{3}=\mathrm{CaO}+\mathrm{CO}_{2}
$$

Solution: Step 1.The stoichiometry is easy here.
It is $1: 1$. So we can get the number of moles of CO_{2}.

$$
n_{\mathrm{CO}_{2}}=\frac{840 \times 10^{12} \mathrm{grams}}{44 \mathrm{grams} / \mathrm{mole}}
$$

Step 2. Now we calculate the mass of of CaCO_{3}.

$$
m_{\text {CaCo }_{3}}=\left(1.9 \times \times 10^{13} \mathrm{moles}\right)(100 \mathrm{grams} / \mathrm{mol})
$$

The answer is 1.9×10^{15} grams or 1.9 billion tons.

