Cement production $CaCO_3 = CaO + CO_2$

6% of the world's CO_2 comes from cement factories.

Assuming 840 million tons of CO_2 gas are emitted each year from cement factories, what mass of $CaCO_3$ is consumed to make cement? $CaCO_3 = CaO + CO_2$ Assuming 840 million tons of CO_2 gas are emitted Each year from cement factors, what mass of $CaCO_3$ is consumed to make cement? $CaCO_3 = CaO + CO_2$

Solution: Step 1.The stoichiometry is easy here. It is 1:1. So we can get the number of moles of CO_2 , $n_{CO_2} = \frac{840 \times 10^{12} \ grams}{44 \ grams/mole}$ which is 1.9 x 10¹³ moles. Assuming 840 million tons of CO_2 gas are emitted each year from cement factors, what mass of $CaCO_3$ is consumed to make cement? $CaCO_3 = CaO + CO_2$

Solution: Step 1.The stoichiometry is easy here. It is 1:1. So we can get the number of moles of CO₂. $n_{CO_2} = \frac{840 \ x \ 10^{12} \ grams}{44 \ grams/mole}$

Step 2. Now we calculate the mass of of $CaCO_3$.

 $m_{CaCO_3} = (1.9 \ x \ x \ 10^{13} \ moles)(100 \ grams/mol)$

The answer is 1.9 x 10¹⁵ grams or 1.9 billion tons.