Determining reaction order

Use the isolation method to determine the reaction order for the chemical reaction

$$NO_2 + CO \rightarrow NO + CO_2$$

Rate	$[NO_2]$	[CO]
756	0.050	0.050
1278	0.065	0.050
1935	0.080	0.050
756	0.050	0.065
756	0.050	0.080

Determining reaction order

Use the isolation method to determine the reaction order for the chemical reaction

$$NO_2 + CO \rightarrow NO + CO_2$$

For [NO₂] we have

$$a = \frac{\ln\left(\frac{1278}{765}\right)}{\ln\left(\frac{0.065}{0.050}\right)} = \frac{0.525}{0.262} \approx 2.0$$

For [CO] we have 0 since the rate does not change when the CO concentration is changed. $v = k[NO_2]^2$