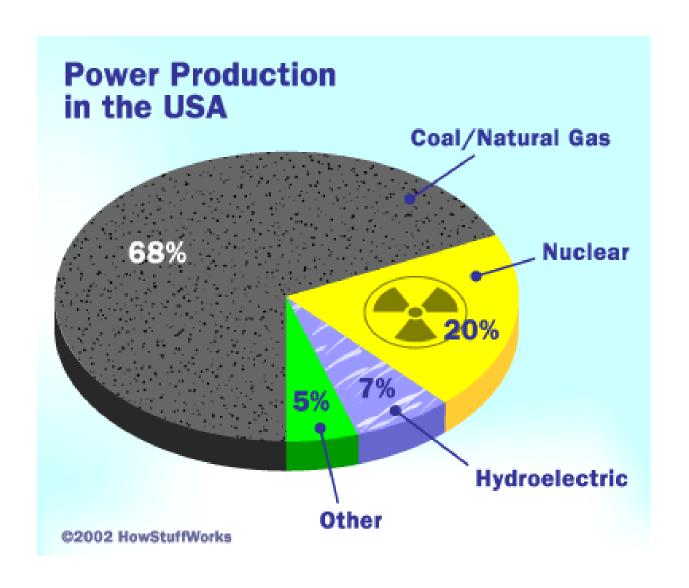
Chemistry 201


Energy conversion

Comparison of fuels

Balancing the general hydrocarbon eqn

NC State University

Focus on energy

$$C(s) + O_2 \rightarrow H_2O + CO_2$$

 $CH_4 + O_2 \rightarrow H_2O + CO_2$
 $C_3H_8 + O_2 \rightarrow H_2O + CO_2$
 $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$
 $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$

$$C(s) + O_2 \rightarrow H_2O + CO_2$$
 Coal
 $CH_4 + O_2 \rightarrow H_2O + CO_2$
 $C_3H_8 + O_2 \rightarrow H_2O + CO_2$
 $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$
 $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$

$$C(s) + O_2 \rightarrow H_2O + CO_2$$
 Coal $CH_4 + O_2 \rightarrow H_2O + CO_2$ Methane $C_3H_8 + O_2 \rightarrow H_2O + CO_2$ $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$ $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$

$$C(s) + O_2 \rightarrow H_2O + CO_2$$
 Coal $CH_4 + O_2 \rightarrow H_2O + CO_2$ Methane $C_3H_8 + O_2 \rightarrow H_2O + CO_2$ Propane $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$ $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$

 $C_2H_5OH + O_2 \rightarrow H_2O + CO_2$

$$C(s) + O_2 \rightarrow H_2O + CO_2$$
 Coal $CH_4 + O_2 \rightarrow H_2O + CO_2$ Methane $C_3H_8 + O_2 \rightarrow H_2O + CO_2$ Propane $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$ Octane

$$C(s) + O_2 \rightarrow H_2O + CO_2$$
 Coal
$$CH_4 + O_2 \rightarrow H_2O + CO_2$$
 Methan
$$CH_4 + O_2 \rightarrow H_2O + CO_2$$
 Propan

$$C_3H_8 + O_2 \rightarrow H_2O + CO_2$$

$$C_8H_{18} + O_2 \rightarrow H_2O + CO_2$$

$$C_2H_5OH + O_2 \rightarrow H_2O + CO_2$$

Coal

Methane

Propane

Octane

Ethanol

$$C(s) + O_2 \rightarrow H_2O + CO_2$$
 Coal $CH_4 + O_2 \rightarrow H_2O + CO_2$ Methane $C_3H_8 + O_2 \rightarrow H_2O + CO_2$ Propane $C_8H_{18} + O_2 \rightarrow H_2O + CO_2$ Octane $C_2H_5OH + O_2 \rightarrow H_2O + CO_2$ Ethanol

General Hydrocarbon

$$C_nH_{2n+2} + O_2 \rightarrow H_2O + CO_2$$

$$C(s) + \frac{3}{2}O_2 \rightarrow H_2O + CO_2$$
 Coal $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$ Methane $C_3H_8 + 5O_2 \rightarrow 4H_2O + 3CO_2$ Propane $C_8H_{18} + \frac{25}{2}O_2 \rightarrow 9H_2O + 8CO_2$ Octane $C_2H_5OH + 3O_2 \rightarrow 3H_2O + 2CO_2$ Ethanol

Fuels (balanced equations)

$$C(s) + \frac{3}{2}O_2 \rightarrow H_2O + CO_2$$
 Coal

 $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$ Methane

 $C_3H_8 + 5O_2 \rightarrow 4H_2O + 3CO_2$ Propane

 $C_8H_{18} + \frac{25}{2}O_2 \rightarrow 9H_2O + 8CO_2$ Octane

 $C_2H_5OH + 3O_2 \rightarrow 3H_2O + 2CO_2$ Ethanol

General Hydrocarbon

$$C_nH_{2n+2} + \frac{3n+1}{2}O_2 \rightarrow (n+1)H_2O + nCO_2$$

$$a C_n H_{2n+2} + b O_2 \rightarrow x H_2 O + y CO_2$$

$$a C_n H_{2n+2} + b O_2 \rightarrow x H_2 O + y CO_2$$

Write down the coefficient equations for each atom:

$$H: (2n+2)a = 2x$$

C:
$$(n)a = y$$

O:
$$2b = x + 2y$$

$$a C_n H_{2n+2} + b O_2 \rightarrow x H_2 O + y CO_2$$

Write down the coefficient equations for each atom:

H:
$$(n+1)a = x$$

C:
$$(n)a = y$$

O:
$$2b = x + 2y$$

$$a C_n H_{2n+2} + b O_2 \rightarrow x H_2 O + y CO_2$$

Write down the coefficient equations for each atom:

H: (n+1)a = x

C: (n)a = y

O: 2b = x + 2y

Choose one coefficient to define the remaining ratios:

Let a = 1, Then x = n + 1 and y = n, finally b = (3n + 1)/2

$$C_nH_{2n+2} + \frac{3n+1}{2}O_2 \rightarrow (n+1)H_2O + nCO_2$$

Write down the coefficient equations for each atom:

H: (n+1)a = x

C: (n)a = y

O: 2b = x + 2y

Choose one coefficient to define the remaining ratios:

Let a = 1, Then x = n + 1 and y = n, finally b = (3n + 1)/2

Environmental pollution

Climate change

Air pollution

Non-renewable resource

