Examples: One strong and one weak

What is the pH when 25.0 mL of 0.40 M HCl are added to 40.0 mL of $0.30 \mathrm{M} \mathrm{NH}_{3}$?

Examples: One strong and one weak

What is the pH when 25.0 mL of 0.40 M HCl are added to 40.0 mL of $0.30 \mathrm{M} \mathrm{NH}_{3}$?

Solution: The total volume is 65 mL so the final Concentrations are:
$[\mathrm{HCl}]=25 / 65(0.40 \mathrm{M})=0.154 \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=40 / 65(0.30 \mathrm{M})=0.184 \mathrm{M}$
In this case the $[\mathrm{HCl}]<\left[\mathrm{NH}_{3}\right]$ so this will make a buffer. Assume that the strong acid reacts completely then at equilibrium we have:

$$
\left[\mathrm{NH}_{3}\right]=0.184-0.154 \mathrm{M}=0.03 \mathrm{M} \text { and }\left[\mathrm{NH}_{4}^{+}\right]=0.154 \mathrm{M}
$$

Examples: One strong and one weak

$$
\begin{gathered}
\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \\
\mathrm{NH}_{4}^{+} \rightarrow \mathrm{H}^{+}+\mathrm{NH}_{3} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right) \\
\mathrm{pH}=9.4+\log _{10}\left(\frac{0.03}{0.154}\right) \\
\mathrm{pH}=8.68
\end{gathered}
$$

