20.0 mL of 0.30 M NaH₂PO₄ was added to 20.0 mL of 0.30 M NaHS. What are the concentrations of all species at equilibrium? [The pK_a of H₂PO₄⁻ and H₂S are 7.2 and 6.9]

20.0 mL of 0.30 M NaH₂PO₄ was added to 20.0 mL of 0.30 M NaHS. What are the concentrations of all species at equilibrium?

Solution: Look up the K_a for each reaction involved in this acid-base equilibrium.

$$HS^{-} + H_{2}PO_{4}^{-} \leftrightarrow HPO_{4}^{2-} + H_{2}S$$

$$H_{2}PO_{4}^{-} \leftrightarrow HPO_{4}^{2-} + H^{+}$$

$$HS^{-} + H^{+} \leftrightarrow H_{2}S$$

$$K = \frac{K_{a}(H_{2}PO_{4}^{-})}{K_{a}(H_{2}S)} = \frac{6.20 \times 10^{-8}}{1.26 \times 10^{-7}} = 0.49$$

$$K = \frac{[HPO_{4}^{2-}][H_{2}S]}{[HS^{-}][H_{2}PO_{4}^{-}]}$$

x = 0.0636

Species	HS ⁻	$H_2PO_4^-$	HPO_{4}^{2-}	H_2S
Initial	0.15	0.15	0.0	0.0
Difference	-X	-X	x	x
Final	0.15-x	0.15-x	X	x

Thus the concentrations are:

 $[HS^{-}] = [H_2PO_4^{-}] = 0.0864 M$ $[H_2S] = [HPO_4^{2-}] = 0.0636 M$

Such mixtures form a double buffer. Both the $[HS^-]/[H_2S]$ and the $[HPO_4^{2-}]/[H_2PO_4^-]$ ratio can be used in the Hendersen-Hasselbach equation to predict the pH. Regardless of which buffer we choose we will obtain the same answer for the pH.

Species	HS ⁻	$H_2PO_4^-$	HPO_4^{2-}	H_2S
Initial	0.15	0.15	0.0	0.0
Difference	-X	-X	x	x
Final	0.15-x	0.15-x	x	x

Use the Hendersen-Hasselbach equation to predict the pH.

 $pH = 7.2 + log_{10} \left(\frac{0.064}{0.086}\right) = 7.06$ We can check using other pK_a for H₂S. $pH = 6.9 + log_{10} \left(\frac{0.086}{0.064}\right) = 7.03$ The small difference is due to rounding error

The small difference is due to rounding error.