Examples: One strong and one weak

 What is the pH when 50.0 mL of 0.25 M NaOH are added to 40.0 mL of 0.20 M HF ?
Examples: One strong and one weak

 What is the pH when 50.0 mL of 0.25 M NaOH are added to 40.0 mL of 0.20 M HF ?Step 1. Calculate dilutions. First add the volumes

$$
\text { Total volume }=50 \mathrm{~mL}+40 \mathrm{~mL}=90 \mathrm{~mL}
$$

Calculate concentrations in the solution

$$
\begin{aligned}
{[H F] } & =[0.20]\left(\frac{40}{90}\right)=0.0888 \mathrm{M} \\
{[\mathrm{NaOH}] } & =[0.25]\left(\frac{50}{90}\right)=0.139 \mathrm{M}
\end{aligned}
$$

Examples: One strong and one weak

 What is the pH when 50.0 mL of 0.25 M NaOH are added to 40.0 mL of 0.20 M HF ?Step 2. Write a balanced chemical reaction and determine the form of the equilibrium constant.

$$
\mathrm{HF}+\mathrm{OH}^{-} \leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Step 3. Although the equilibrium constant is given by:

$$
\frac{1}{K_{b}}=\frac{\left[F^{-}\right]}{[H F]\left[O H^{-}\right]}
$$

we can assume that the OH^{-}reacts complete with HF since it is a strong base. In this case the limiting reagent is HF so We have excess $\left[\mathrm{OH}^{-}\right]=0.1390-0.0888=0.511 \mathrm{M}$

Examples: One strong and one weak

 What is the pH when 50.0 mL of 0.25 M NaOH are added to 40.0 mL of 0.20 M HF ?Step 5. Calculate pOH .

$$
p O H=-\log _{10}(0.0511)=1.29
$$

Therefore, $\mathrm{pH}=14-\mathrm{pOH}=12.71$

Strong base exceeds weak acid

The key point of the previous problem is that we are no longer in the buffer range. We cannot use $\mathrm{H}-\mathrm{H}$ in this case. Since:

$$
\left[\mathrm{OH}^{-}\right]_{0}>\left[\mathrm{HA}_{0}\right.
$$

While K_{b} still applies it is often unnecessary since $\left[\mathrm{OH}^{-}\right]$is in excess.

If you need to use K_{b} then use:
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HA}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
$$

