Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Step 1. Calculate dilutions. First add the volumes

$$
\text { Total volume }=25 \mathrm{~mL}+35 \mathrm{~mL}=60 \mathrm{~mL}
$$

Calculate concentrations in the solution

$$
\begin{gathered}
{[\mathrm{HCl}]=[0.30]\left(\frac{25}{60}\right)=0.125 \mathrm{M}} \\
{[\mathrm{NaOH}]=[0.20]\left(\frac{35}{60}\right)=0.117 \mathrm{M}}
\end{gathered}
$$

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Step 2. Write a balanced chemical reaction for the limiting reaction and the excess reaction.

Limiting reaction
$\mathrm{HCl}+\mathrm{NaOH} \leftrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$

Species	HCl	NaOH	Na^{+}	Cl^{-}
Initial	0.125	0.117	0.0	0.0
Difference	-x	-x	x	x
Final	$0.125-\mathrm{x}$	$0.117-\mathrm{x}$	x	x

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Step 2. Write a balanced chemical reaction for the limiting reaction and the excess reaction.
Limiting reaction
$\mathrm{HCl}+\mathrm{NaOH} \leftrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$

Species	HCl	NaOH	Na^{+}	Cl^{-}
Initial	0.125	0.117	0.0	0.0
Difference	-0.117	-0.117	0.117	0.117
Final	0.008	0.0	0.117	0.117

Excess reaction $\mathrm{HCl} \leftrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$

Species	HCl	H^{+}	Cl^{-}
Initial	0.008	0.0	0.0
Final	0.0	0.008	0.008

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Recognize that both HCl and NaOH are strong acid/base, respectively. Therefore, rather than find the equilibrium constant, we assume that the reaction goes to completion. In this case we find the limiting reagent which is NaOH .

In the general case we could include both H^{+}and OH^{-}on the right hand side. We may not know initially which one is going to dominate, since we must first calculate the limiting reagent.

$$
p H=-\log _{10}(0.008)=2.09
$$

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Short cut method:
Step 1. calculate number of moles of each reagent

$$
\begin{gathered}
n_{\mathrm{HCl}}=[0.30 \mathrm{M}](0.025 \mathrm{~L})=7.5 \times 10^{-3} \mathrm{~mol} \\
n_{\mathrm{NaOH}}=[0.20 \mathrm{M}](0.035 \mathrm{~L})=7.0 \times 10^{-3} \mathrm{~mol}
\end{gathered}
$$

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Short cut method:
Step 1. calculate number of moles of each reagent

$$
\begin{gathered}
n_{H C l}=[0.30 \mathrm{M}](0.025 \mathrm{~L})=7.5 \times 10^{-3} \mathrm{~mol} \\
n_{\mathrm{NaOH}}=[0.20 \mathrm{M}](0.035 \mathrm{~L})=7.0 \times 10^{-3} \mathrm{~mol}
\end{gathered}
$$

Step 2. calculate the total volume $(0.025+0.035=0.060 \mathrm{~L})$ Step 3. make a table considering only H^{+}and OH^{-}

Species	H^{+}	OH^{-}	H 2 O
Initial	7.5	7.0	0.0
Difference	-7.0	-7.0	+7.0
Final	0.5	0.0	7.0

Examples: Strong acids and bases

What is the pH when 25 mL of 0.30 M HCl are added to 35 mL of 0.20 M NaOH ?

Short cut method:
Step 4. calculate the final concentration of $\left[\mathrm{H}^{+}\right]$

$$
\left[H^{+}\right]=\frac{n_{H^{+}}}{V_{\text {tot }}}=\frac{5 x 10^{-4}}{0.06}=0.008
$$

Step 5. calculate the pH

$$
p H=-\log _{10}(0.008)=2.09
$$

