Chemistry 201

An examination of phosphate: an important polyprotic acid

NC State University

Phosphate as a polyprotic acid

Phosphate has three acidic hydrogens. In such cases, we define the various K_a 's with numbers K_{a1} , K_{a2} , etc.

$$H_3PO_4 + H_2O \rightarrow H_2PO_4^- + H_3O^+ K_{a1}$$
 $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+ K_{a2}$
 $HPO_4^{2-} + H_2O \rightarrow PO_4^{3-} + H_3O^+ K_{a3}$
 $K_{a1} = 7.25 \times 10^{-3}$
 $K_{a2} = 6.31 \times 10^{-8}$

 $K_{a3} = 4.80 \times 10^{-13}$

Polyprotic acid: Phosphoric acid

Let's examine a 1 M solution of phosphoric acid.

$$H_3PO_4 \leftrightarrow H_2PO_4^- + H^+$$

The equilibrium constant is

$$K_{a1} = \frac{[H_2 P O_4^{-}][H^+]}{[H_3 P O_4]}$$

The appropriate ICE table is

Molecule	$[H_3PO_4]$	$[H_2PO_4^{-}]$	$[H^+]$
Initial	С	0	0
Difference	-X	X	X
Equilibrium	C - x	X	X

Polyprotic acid: Phosphoric acid

Here we see the full treatment including the quadratic formula

$$K_{a1} = \frac{x^2}{C - x}$$

$$x = \frac{K_a \pm \sqrt{{K_a}^2 + 4CK_a}}{-2}$$

$$x = \frac{7.1 \times 10^{-3} \pm \sqrt{(7.1 \times 10^{-3})^2 + 4(7.1 \times 10^{-3})}}{-2}$$

$$x = 0.081$$

$$pH = -log_{10}(0.081) = 1.09$$

Short cut method: does it work?

Here we see the short cut that assumes x << C.

$$K_{a1} \approx \frac{x^2}{C}$$

$$x^2 \approx CK_{a1}$$

$$x \approx \sqrt{CK_{a1}} = \sqrt{7.1 \times 10^{-3}} = 0.084$$

$$pH = -log_{10}(0.084) = 1.08$$

Both methods give the same result.

The second K_a equilibrium

$$H_2PO_4^- \leftrightarrow HPO_4^{\ 2-} + H^+$$

$$K_{a2} = \frac{[HPO_4^{\ 2^-}][H^+]}{[H_2PO_4^{\ -}]} \qquad K_{a2} = \frac{Hx}{D-x}$$

To keep it general we designate two constants D and H.

Molecule	$[H_2PO_4^{-}]$	$[HPO_4^{2-}]$	$[H^+]$
Initial	D	0	Ι
Difference	-X	X	0
Equilibrium	D - x	X	Ι

Here D = H = 0.084 from first Ka calculation.

$$x \approx \frac{DK_{a2}}{H} = K_{a2} = 6.3 \times 10^{-8}$$

$$[HPO_4^{2-}] \approx 6.3 \times 10^{-8}$$

Treat as separate Equilibrium.
Ka separated by many orders of magnitude.

The third K_a equilibrium

$$HPO_4^{\ 2-} \leftrightarrow PO_4^{\ 3-} + H^+$$

$$K_{a3} = \frac{[PO_4^{\ 3-}][H^+]}{[HPO_4^{\ 2-}]}$$
 $K_{a3} = \frac{Hx}{E - x}$

Molecule	$[HPO_4^{2-}]$	PO_4^{3-}	$[H^+]$
Initial	Е	0	Η
Difference	-X	X	0
Equilibrium	E - x	X	Н

Here H = 0.084 from first Ka calc. and E = 6.3×10^{-8}

$$x \approx \frac{EK_{a3}}{H} = \frac{K_{a2}K_{a3}}{[OH^{-}]} = \frac{(6.3 \times 10^{-8})(4.5 \times 10^{-13})}{0.084}$$

$$[PO_4^{3-}] \approx 3.6 \times 10^{-19}$$

Analysis

In considering the polyprotic acid equilibria of phosphate We have the following key points.

- 1. The first equilibrium can be treated as a weak acid.
- 2. Each equilibrium can be treated separately.
- 3. The first equilibrium will give the $[H^+]$ and determine the pH. Subsequent equilibrium constants are orders of magnitude smaller and will contribute a negligible amount to the pH. The pH is a constant determined by the first K_a .