Chemistry 201

An examination of phosphate: an important polyprotic acid

NC State University

Phosphate as a polyprotic acid

Phosphate has three acidic hydrogens. In such cases, we define the various K_{a} 's with numbers $\mathrm{K}_{\mathrm{a} 1}, \mathrm{~K}_{\mathrm{a} 2}$, etc.

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{K}_{\mathrm{a} 1} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{K}_{\mathrm{a} 2} \\
& \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{a} 3} \\
& \mathrm{~K}_{\mathrm{a} 1}=7.25 \times 10^{-3} \\
& \mathrm{~K}_{\mathrm{a} 2}=6.31 \times 10^{-8} \\
& \mathrm{~K}_{\mathrm{a} 3}=4.80 \times 10^{-13}
\end{aligned}
$$

Polyprotic acid: Phosphoric acid

Let's examine a 1 M solution of phosphoric acid.

$$
\mathrm{H}_{3} \mathrm{PO}_{4} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+}
$$

The equilibrium constant is

$$
K_{a 1}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}
$$

The appropriate ICE table is

Molecule	$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$	$\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$	$\left[\mathrm{H}^{+}\right]$
Initial	C	0	0
Difference	-x	x	x
Equilibrium	$\mathrm{C}-\mathrm{x}$	x	x

Polyprotic acid: Phosphoric acid

Here we see the full treatment including the quadratic formula

$$
\begin{gathered}
K_{a 1}=\frac{x^{2}}{C-x} \\
x=\frac{K_{a} \pm \sqrt{K_{a}^{2}+4 C K_{a}}}{-2} \\
x=\frac{7.1 \times 10^{-3} \pm \sqrt{\left(7.1 \times 10^{-3}\right)^{2}+4\left(7.1 \times 10^{-3}\right)}}{-2} \\
x=0.081 \\
p H=-\log _{10}(0.081)=1.09
\end{gathered}
$$

Short cut method: does it work?

Here we see the short cut that assumes $x \ll C$.

$$
\begin{gathered}
K_{a 1} \approx \frac{x^{2}}{C} \\
x^{2} \approx C K_{a 1} \\
x \approx \sqrt{C K_{a 1}}=\sqrt{7.1 \times 10^{-3}}=0.084 \\
p H=-\log _{10}(0.084)=1.08
\end{gathered}
$$

Both methods give the same result.

The second K_{a} equilibrium

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \leftrightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+} \\
K_{a 2}=\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]} \quad K_{a 2}=\frac{H x}{D-x}
\end{gathered}
$$

To keep it general we designate two constants D and H .

Molecule	$\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$	$\left[\mathrm{HPO}_{4}{ }^{2-}\right.$	$\left[\mathrm{H}^{+}\right]$
Initial	D	0	H
Difference	-x	x	0
Equilibrium	$\mathrm{D}-\mathrm{x}$	x	H

Here $\mathrm{D}=\mathrm{H}=0.084$ from first Ka calculation.

$$
\begin{gathered}
x \approx \frac{D K_{a 2}}{H}=K_{a 2}=6.3 \times 10^{-8} \\
{\left[H \mathrm{HO}_{4}{ }^{2-}\right] \approx 6.3 \times 10^{-8}}
\end{gathered}
$$

Treat as separate Equilibrium.
Ka separated by many orders of magnitude.

The third K_{a} equilibrium

$$
\mathrm{HPO}_{4}{ }^{2-} \leftrightarrow \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}^{+}
$$

$$
K_{a 3}=\frac{\left[\mathrm{PO}_{4}{ }^{3-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HPO}_{4}{ }^{2-}\right]} \quad K_{a 3}=\frac{H x}{E-x}
$$

Molecule	$\left[\mathrm{HPO}_{4}{ }^{2-}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]$	$\left[\mathrm{H}^{+}\right]$	
Initial	E	0	H
Difference	-x	x	0
Equilibrium	$\mathrm{E}-\mathrm{x}$	x	H

Here $\mathrm{H}=0.084$ from first Ka calc. and $\mathrm{E}=6.3 \times 10^{-8}$

$$
\begin{gathered}
x \approx \frac{E K_{a 3}}{H}=\frac{K_{a 2} K_{a 3}}{\left[O H^{-}\right]}=\frac{\left(6.3 \times 10^{-8}\right)\left(4.5 \times 10^{-13}\right)}{0.084} \\
{\left[\mathrm{PO}_{4}^{3-}\right] \approx 3.6 \times 10^{-19}}
\end{gathered}
$$

Analysis

In considering the polyprotic acid equilibria of phosphate We have the following key points.

1. The first equilibrium can be treated as a weak acid.
2. Each equilibrium can be treated separately.
3. The first equilibrium will give the $\left[\mathrm{H}^{+}\right]$and determine the pH . Subsequent equilibrium constants are orders of magnitude smaller and will contribute a negligible amount to the pH .
The pH is a constant determined by the first K_{a}.
