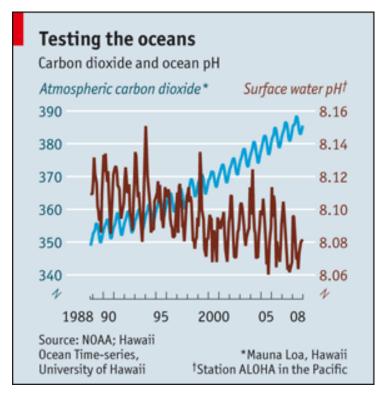
Chemistry 201

Ocean Acid-Base Chemistry

NC State University


Ocean acidification

 CO_2 that is emitted into the atmosphere is taken up by the oceans. There is an equilibrium between the CO_2 in the atmosphere and the water. Once the CO_2 is dissolved it can dissociate. Thus, increasing CO_2 levels mean increased

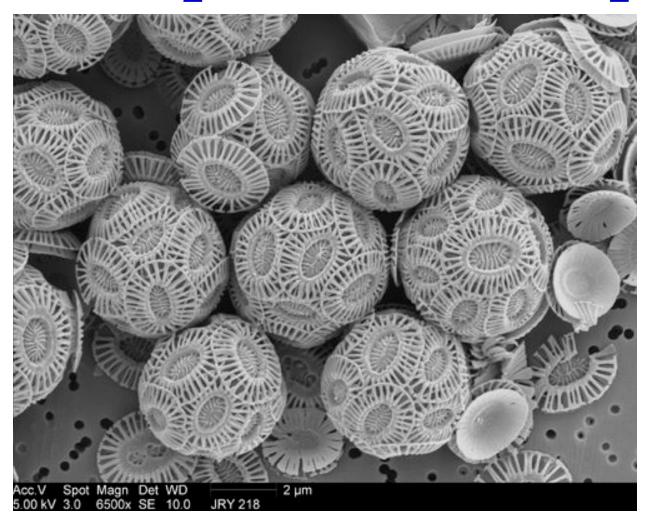
acidity in the ocean.

$$CO_2 + H_2O \rightarrow HCO_3^- + H_3O^+$$

$$HCO_3^- + H_2O \rightarrow CO_3^{2-} + H_3O^+$$

Carbonic acid: major determinant of ocean chemistry

Carbonic acid has two acidity constants. When CO_2 is taken up by water it reacts to form hydrogen carbonate. HCO_3^- is the major form of this acid.

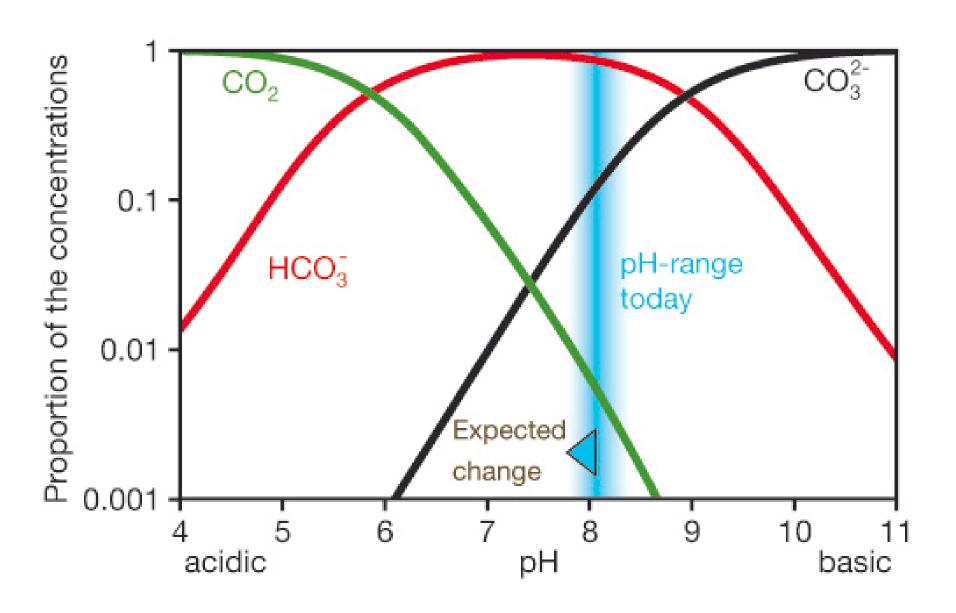

$$CO_2 + H_2O \rightarrow HCO_3^- + H_3O^+$$
 $K_{a1} = 4.5 \times 10^{-7}$ $HCO_3^- + H_2O \rightarrow CO_3^{2-} + H_3O^+$ $K_{a2} = 4.8 \times 10^{-11}$

The balance of carbonate and hydrogen carbonate is very important for life in the ocean.

Coral reefs are highly colored collections of CaCO₃

Diatoms are microorganisms that fix CO₂ and produce O₂

Ratio of CO₃²⁻ and HCO₃⁻


We can use the H-H equation to determine the ratio of CO_3^{2-} and HCO_3^{-}

$$HCO_3^- + H_2O \rightarrow CO_3^{2-} + H_3O^+ \qquad pK_{a2} = 10.3$$

The pH of the ocean is 8.1. However, 100 years ago it used to be 8.2. Using the H-H equation we can examine the ratio of these important ions today.

$$\begin{split} pH &= pK_a + log_{10} \left(\frac{[A^-]}{[HA]} \right) \qquad \frac{[A^-]}{[HA]} = 10^{pH-pK_a} \\ &\frac{[CO_3^{2-}]}{[HCO_2^{-}]} = 10^{8.1-10.3} = 10^{-2.2} = 0.0063 \end{split}$$

Carbonate species in the ocean

