Chemistry 201

Methods for making buffers

NC State University

Two ways to make a buffer

Method 1

Method 2

Add the acid and conjugate base to the solution in a defined proportion.

Add a strong acid to the weak base (or vice versa) until the desired proportion $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ is obtained.

Buffer strength

The ratio $[A-] /[\mathrm{HA}]$ should be as close as possible 1:1, but the amounts may vary. To make a stronger buffer you simply need to increase the amount of each component. Let's investigate.

Suppose we add 1 mL of 1 M HCI to 1 liter of solution. The final concentration of HCl is 0.001 M .

Buffer strength

The ratio $[\mathrm{A}] /[\mathrm{HA}]$ should be as close as possible 1:1, but the amounts may vary. To make a stronger buffer you simply need to increase the amount of each component. Let's investigate.

Suppose we add 1 mL of 1 M HCI to 1 liter of solution. The final concentration of HCl is $0.001 \mathrm{M} . \mathrm{pH}=3$

Buffer strength

The ratio $[\mathrm{A}-] /[\mathrm{HA}]$ should be as close as possible 1:1, but the amounts may vary. To make a stronger buffer you simply need to increase the amount of each component. Let's investigate.

Suppose we add 1 mL of 1 M HCl to 1 liter of solution. The final concentration of HCl is $0.001 \mathrm{M} . \mathrm{pH}=3$

Suppose we add 1 mL of 1 M HCl to 1 liter of 10 mM optimal phosphate buffer solution ($\mathrm{pKa}=7.2$) solution. The final concentration of HCl is $0.001 \mathrm{M} . \mathrm{pH}=\mathrm{pKa}+\log 10([\mathrm{~A}-] /[\mathrm{HA}])$

Buffer strength

Keeping in mind that the unbuffered solution in this example ($[\mathrm{HCl}]=0.001 \mathrm{M}$) would be $\mathrm{pH}=3$

Suppose we add 1 mL of 1 M HCl to 1 liter of 10 mM optimal phosphate buffer solution ($\mathrm{pKa}=7.2$) solution. The final concentration of HCl is 0.001 M .
$\mathrm{pH}=\mathrm{pKa}+\log _{10}([\mathrm{~A}-] /[\mathrm{HA}])$
$[A-]=0.005-0.001=0.004 \quad[\mathrm{HA}]=0.005+0.001=0.006$
$\mathrm{pH}=7.2+\log 10(0.004 / 0.006)=7.02$
If the target $\mathrm{pH}=7.2$ (i.e. $\mathrm{pH}=\mathrm{pKa}$) then this buffer is too weak. An error of 0.2 pH units could be significant.

Buffer strength

Keeping in mind that the unbuffered solution in this example ($[\mathrm{HCl}]=0.001 \mathrm{M}$) would be $\mathrm{pH}=3$

Suppose we add 1 mL of 1 M HCl to 1 liter of 100 mM optimal phosphate buffer solution ($\mathrm{pKa}=7.2$) solution. The final concentration of HCl is 0.001 M .
$\mathrm{pH}=\mathrm{pKa}+\log _{10}([\mathrm{~A}-\mathrm{j} /[\mathrm{HA}])$
$[A-]=0.05-0.001=0.049 \quad[H A]=0.05+0.001=0.051$
$\mathrm{pH}=7.2+\log 10(0.049 / 0.051)=7.18$
If the target $\mathrm{pH}=7.2$ (i.e. $\mathrm{pH}=\mathrm{pKa}$) then this buffer is reasonable. The difference is only -0.02 .

Buffer strength

Keeping in mind that the unbuffered solution in this example ($[\mathrm{HCl}]=0.001 \mathrm{M}$) would be $\mathrm{pH}=3$

Suppose we add 1 mL of 1 M HCl to 1 liter of 300 mM optimal phosphate buffer solution ($\mathrm{pKa}=7.2$) solution. The final concentration of HCl is 0.001 M .
$\mathrm{pH}=\mathrm{pKa}+\log _{10}([\mathrm{~A}-] /[\mathrm{HA}])$
$[A-]=0.150-0.001=0.149 \quad[\mathrm{HA}]=0.150+0.001=0.151$
$\mathrm{pH}=7.2+\log 10(0.149 / 0.151)=7.194$
If the target $\mathrm{pH}=7.2$ (i.e. $\mathrm{pH}=\mathrm{pKa}$) then we would say that this buffer is definitely strong enough, difference $=-0.006$

Titrating to make a buffer

You can create a buffer either by adding the acid and Its conjugate base to a solution or by titrating in strong base to acid (or vice versa). Remember, regardless of the method used to prepare it:

The buffering strength is maximum when $[H A]=\left[A^{-}\right]$
The buffering range is considered to extend from $\left[A^{-}\right] /[\mathrm{HA}]=0.1$ to $\left[A^{-}\right] /[\mathrm{HA}]=10$. This is subjective. Wertz suggests 0.01 to 100 is an acceptable range.

