Chemistry 201

Acid-base mixtures

NC State University

Acid/Base Mixtures : Reactions

- How do you calculate pH after an acid/base reaction occurs?
- Systematic approach:
- Strong-strong
- Strong-weak
- Weak-weak

Acid/Base Mixtures

- Cases with no reaction
- acid + acid
- base + base
- both halves of conjugate pair
- Cases with reactions
- acid + base

Strong base exceeds weak acid

The key point of the previous problem is that we are no longer in the buffer range. We cannot use $\mathrm{H}-\mathrm{H}$ in this case. Since:

$$
\left[\mathrm{OH}^{-}\right]_{0}>\left[\mathrm{HA}_{0}\right.
$$

While K_{b} still applies it is often unnecessary since $\left[\mathrm{OH}^{-}\right]$is in excess.

If you need to use K_{b} then use:
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HA}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
$$

Examples: Weak acid and weak base

For a reaction of a weak acid and a weak base we need to calculate the equilibrium constant from the known K_{a} 's. We take the example of ammonium acetate.

$$
\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}+\mathrm{NH}_{3} \leftrightarrow \mathrm{H}_{3} \mathrm{C}_{2} \mathrm{O}_{2}^{-}+\mathrm{NH}_{4}^{+}
$$

We see that the overal reaction is composed of two acid-base equilibria

$$
\begin{array}{lc}
\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H} \leftrightarrow \mathrm{H}_{3} \mathrm{C}_{2} \mathrm{O}_{2}^{-}+\mathrm{H}^{+} & K_{a} \quad \text { for acetate } \\
\mathrm{H}^{+}+\mathrm{NH}_{3} \leftrightarrow \mathrm{NH}_{4}^{+} & \frac{1}{K_{a}} \text { for ammonia }
\end{array}
$$

Examples: Weak acid and weak base

 Therefore, the overall equilibrium constant for the reaction is$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}+\mathrm{NH}_{3} \leftrightarrow \mathrm{H}_{3} \mathrm{C}_{2} \mathrm{O}_{2}^{-}+\mathrm{NH}_{4}{ }^{+} \\
K=\frac{K_{a} \text { for acetate }}{K_{a} \text { for ammonia }}
\end{gathered}
$$

Now, that we can see how to calculate the
Equilibrium constant, we can solve any acid-base
Reaction problem using the standard methods
That we have used.
Step. 1. determine dilutions
Step. 2. set up the reaction table
Step. 3. solve for the unknown and then calculate pH

