What is the pH and % ionization of a 0.0084 M solution of HCIO? ($pK_a = 7.46$)

What is the pH and % ionization of a 0.0084 M solution of HCIO? ($pK_a = 7.46$)

Solution: Write down the reaction $HClO \leftrightarrow H^+ + ClO^-$

Step 1: Solve for K_a

$$K_a = 10^{-pKa} = 10^{-7.46} = 3.47 \times 10^{-8}$$

Step 2: The pKa is quite close to 7.0. Will the approximate method work? We will check. Make a reaction table

Molecule	HCIO	CIO	H ⁺
Initial	0.0084	0	0
Change	-X	X	X
Equilibrium	0.0084-x	X	X

HCIO problem (contd) $(pK_a = 7.46)$

Step 3: Solve for x

$$x = \frac{K_a \pm \sqrt{K_a^2 + 4(0.0084)K_a}}{-2}$$

$$x = \frac{3.47x10^{-8} \pm \sqrt{(3.47x10^{-8})^2 + 0.0336(3.4710^{-8})}}{-2}$$

$$x = 1.7x10^{-5}$$

Now, we compare this value directly with the approximate method

$$x = \sqrt{[HClO]_0 K_a} = \sqrt{(0.0085)(3.48 x 10^{-8})}$$
$$x = 1.7x10^{-5}$$
Even for HClO the approximate method works well

HCIO problem (contd) pH and % ionization Step 4: Solve for pH $pH = -log_{10}(1.7x10^{-5}) = 4.77$ Step 5: Calculate percent ionization % ionization = $\frac{x}{[initial]}$ 100% % ionization = $\frac{1.7 \times 10^{-5}}{0.0084}$ 100% = 0.2%