The Hindenberg

Let's model the famous Hindenberg blimp as a cylinder. Assuming it was 75 meters long and had a radius of 8 meters, how many moles of H_{2} gas were present in the Hindenberg? [Hint: you may assume that the pressure of H_{2} was 1 atm.]

The Hindenberg

How many moles of H_{2} gas were present in the

 Hindenberg?Solution: First, use the equation for a cylinder to calculate the volume.

$$
V=\pi r^{2} h=\pi\left(8 m^{2}\right)(75 m)=15080 m^{3}
$$

Insert the value in the ideal gas law.

$$
\begin{aligned}
& n=\frac{P V}{R T}=\frac{(1 \mathrm{~atm})\left(1.51 \times 10^{7} \mathrm{~L}\right)}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(298 \mathrm{~K})} \\
& =6.17 \times 10^{5} \mathrm{~mol}
\end{aligned}
$$

