Velocity of an O_{2} molecule

What is the average velocity of an O_{2} molecule at 298 K ?

Velocity of an O_{2} molecule

What is the average velocity of an O_{2} molecule at 298 K ?

Solution: First we use the kinetic theory of gases.

$$
\frac{1}{2} N m v^{2}=\frac{3}{2} n R T
$$

And we rewrite the expression so that the n will cancel.

$$
\frac{1}{2} n M_{m} v^{2}=\frac{3}{2} n R T
$$

We solve for the average velocity.

$$
v=\sqrt{\frac{3 R T}{M_{m}}}
$$

Velocity of an O_{2} molecule

What is the average velocity of an O_{2} molecule at 298 K ?

 Using the equation for the root-mean-square (kind of average) velocity,$$
v=\sqrt{\frac{3 R T}{M_{m}}}
$$

we can substitute in the known molar mass.

$$
v=\sqrt{\frac{3\left(8.31 \frac{\mathrm{~J}}{\mathrm{molK}}\right)(298 \mathrm{~K})}{0.032 \mathrm{~kg} / \mathrm{mol}}}=482 \mathrm{~m} / \mathrm{s}
$$

