Pressure in a cylinder following combustion

 A. If the initial volume is 0.02 L and the pressure is 5.4 atm as in the previous problem what is the final volume if the pressure drops to 1 atm at constant temperature?B. In order to drive the combustion process fuel and air are forced into the cylinder. How many moles of gas are needed at the initial conditions ($\mathrm{V}_{1}=0.02 \mathrm{~L}, \mathrm{~T}=1200 \mathrm{~K}$) in order for the expansion to go to completion (i.e. for the cylinder to expand to 0.5 L at 1200 K$)$?

Pressure in a cylinder following combustion

A. If the initial volume is 0.02 L and the pressure is 5.4 atm as in the previous problem what is the final volume if the pressure drops to 1 atm at constant temperature?
Solution: This problem is an isothermal expansion

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Solving for the final volume V_{2}, we find

$$
V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{(5.4 \mathrm{~atm})(0.02 \mathrm{~L})}{(1 \mathrm{~atm})}=0.108 \mathrm{~L}
$$

Clearly, this expansion is not complete, since the volume of the cylinder is 0.5 L .

Pressure in a cylinder following combustion

B. How many moles of gas are needed at the initial

 conditions ($\mathrm{V}_{1}=0.02 \mathrm{~L}, \mathrm{~T}=1200 \mathrm{~K}$) in order for the expansion to go to completion?Solution: First we determine the needed pressure. Then we solve the number of moles.

$$
P_{1}=\frac{P_{2} V_{2}}{V_{1}}=\frac{(1 \mathrm{~atm})(0.5 \mathrm{~L})}{(0.02 \mathrm{~L})}=25 \mathrm{~atm}
$$

Now we use the ideal gas law:

$$
n=\frac{P V}{R T}=\frac{(25 \mathrm{~atm})(0.02 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(1200 \mathrm{~K})}=0.0051 \mathrm{~mol}
$$

