Pressure in a cylinder following combustion

Assuming that combustion has taken place the number of moles increases by a factor of 1.36 . Including the N_{2}, the number of moles is 0.0011 and the temperature is 1200 K . What is the pressure inside the piston (assume the volume is constant at the initial $\mathrm{V}=0.02 \mathrm{~L}$)?

Pressure in a cylinder following combustion

Assuming that combustion has taken place the number of moles increases by a factor of 1.36 . Including the N_{2}, the number of moles is 0.0011 and the temperature is 1200 K . What is the pressure inside the piston (assume the volume is constant at the initial $\mathrm{V}=0.02 \mathrm{~L}$)?

Solution: use the ideal gas law solving for pressure.

$$
P=\frac{n R T}{V}=\frac{(0.0011 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(1200 \mathrm{~K})}{0.02 \mathrm{~L}}
$$

$$
P=5.41 \mathrm{~atm}
$$

