Number of moles of O_{2} in a cylinder

An internal combustion engine works on the principle that a small volume of fuel is combusted to create a hot gas. When the piston in a 0.5 liter cylinder is compressed the volume is very small (approx. 0.02 liter). This is typical for 6 cylinder 3.0 liter engine. How many moles of O_{2} gas are present in that volume at 298 K ?

Number of moles of O_{2} in a cylinder

How many moles of O_{2} are present in 0.02 L at 298 K ?

Solution: Use the ideal gas law and solve for n .

$$
\begin{aligned}
& n=\frac{P V}{R T}=\frac{(0.2 \mathrm{~atm})(0.02 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(298 \mathrm{~K})} \\
& =1.64 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

Note that we used 0.2 atm for O_{2} since that is the partial pressure of O_{2} at sea level.

