## Mole fraction of salt in sea water

Sea water is approximately 0.6 M . Assuming (for simplicity) that the salt in sea water is $100 \% \mathrm{NaCl}$ calculate the mole fraction of NaCl and $\mathrm{H}_{2} \mathrm{O}$ in sea water. [Assume that the density is $1.02 \mathrm{gm} / \mathrm{cm}^{3}$ ]

## Mole fraction of salt in sea water

## Calculate the mole fraction of $\mathrm{NaCl}(0.6 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}$ in

 sea water. [Assume that the density is $1.02 \mathrm{gm} / \mathrm{cm}^{3}$ ]Solution: Since the concentration is given in molarity we need the density to obtain the mass of the solvent. The mass of $\mathrm{H}_{2} \mathrm{O}$ is $1020 \mathrm{gm} / \mathrm{L}$ so the number of moles is

$$
n_{1}=\frac{m}{M_{m}}=\frac{1020 \mathrm{gm}}{18 \mathrm{gm} / \mathrm{mol}}=56.7 \mathrm{~mol}
$$

The number of moles of NaCl is given as $n_{2}=0.6$ in one liter. The total number of moles is $n_{1}+n_{2}=57.3 \mathrm{~mol}$. Therefore, the mole fraction of NaCl is:

$$
x_{2}=\frac{n_{2}}{n}=\frac{0.6 \mathrm{~mol}}{57.3 \mathrm{~mol}}=0.0105
$$

## Mole fraction of salt in sea water

To calculate the mole fraction of the water we could go through a similar process. However, it is much simpler to recognize that

$$
x_{1}+x_{2}=1
$$

and therefore that

$$
x_{1}=1-x_{2}
$$

In this case

$$
\begin{gathered}
x_{1}=1-0.0105 \\
x_{1}=0.9895
\end{gathered}
$$

