Number of moles of $\mathrm{H}_{2} \mathrm{O}$ in the ocean

The volume of the ocean has been estimated to be $1.33 \times 10^{9} \mathrm{~km}^{3}$. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are in the ocean? You may assume that the density is 1.01 $\mathrm{gm} / \mathrm{cm}^{3}$.

Number of moles of $\mathrm{H}_{2} \mathrm{O}$ in the ocean

 How many moles of $\mathrm{H}_{2} \mathrm{O}$ are in the ocean?Solution: the number of moles can be calculated using the formula:

$$
n=\frac{\rho V}{M_{m}}
$$

Thus,

$$
n=\frac{\left(10^{6} \frac{\mathrm{gm}}{\mathrm{~m}^{3}}\right)\left(1.33 \times 10^{18} \mathrm{~m}^{3}\right)}{18 \mathrm{gm} / \mathrm{mol}}
$$

Which gives

$$
n=7.39 \times 10^{22} \text { moles }
$$

