How many atoms of carbon are present in a self-assembled monolayer that is 1.4 nm thick and has a density of 1.25 gm/cm³. [NOTE: We are considering the thickness to include only the hydrocarbon part.]

How many atoms of carbon are present in a selfassembled monolayer that is 1.4 nm thick and has a density of 1.25 gm/cm³. [NOTE: We are considering the thickness to include only the hydrocarbon part.] Solution: This problem has one tricky aspect. You need assume an area. Let's assume that the area is 1 cm². Then we calculate the volume (in m³ is probably best)

$$V = A\ell = (10^{-2} m)^2 (1.4 x 10^{-9} m)$$

= 1.4 x 10⁻¹³ m³

Now we do exactly the same set of steps we used for the Au nanoparticle with one difference. We use CH₂.

The CH_2 as a unit means that we will use its molar mass, the number of CH_2 units will equal the number of C atoms. First, we calculate the mass

$$m = \rho V$$

and then the number of moles

$$n = \frac{\rho V}{M_m}$$

and then the number of molecules

$$N = \frac{N_A \rho V}{M_m}$$

and then the number of molecules

$$N = \frac{N_A \rho V}{M_m}$$

We can plug in the values:

$$N = \frac{(6.022 \times 10^{23})(1250)(1.4 \times 10^{-13})(1000)}{14}$$

which gives $N = 7.52 \times 10^{15}$. This seems like a large number, but recall that we are calculated the number in a square centimeter. This is reasonable.

The unit analysis is:

$$N = \frac{\left(\frac{molecules}{mole}\right)\left(\frac{kg}{m^3}\right)(m^3)(1000 \frac{gm}{kg})}{\frac{gm}{mol}}$$

The units are the only tricky part here. When using M_m We often need to use the factor of 1000 to convert to kg in order to be compatible with MKS units.

