Physics I (Newtonian Mechanics)

 

Instructors: Dr.Anna Kowalewska (Lecture) and Dr. Zbigniew Fojud (Laboratory) 

Consultant: NCSU faculty member Dr. Keith Warren

This course is based on NCSU lecture/laboratory course pairing of CH205/206 (3 credits, 1 credit).

The corresponding ISU course is Phys221 (5 credits). This course number includes the laboratory.

 

Physics I for Biology and non-Engineering students

 

Instructors: Dr.Anna Kowalewska (Lecture) and Dr. Zbigniew Fojud (Laboratory) 

Consultant: ISU faculty member Dr. Bruce Harmon

The corresponding ISU course is Phys111 (5 credits).

 

Physics I for Engineers

Text Physics for Scientist & Engineers, 4th edition, volume 1, Giancoli

Week

Topics

Readings

1

Introduction

Interactions & Motion

1.1  Kinds of Matter
1.2  Detecting Interactions
1.3  Newton's First Law
1.4  Other Indicators of Interaction
1.5  3D Vectors
1.6  SI Units
1.7  Velocity

2

Momentum Principle

1.8  Momentum 
1.9  Change of Momentum
2.1  System & Surroundings 
2.2  The Momentum Principle
2.3  Applying Momentum Principle
2.4  Momentum with Changing Force
2.5  Iterative Prediction of Motion

3

Momentum Principle II

2.6  Constant Force
2.7  Estimating Interaction Times
2.8  Physical Models

3.1  Fundamental Interactions
3.2  Gravitational Force
3.3  Gravity Near Earth's Surface
3.4  Reciprocity

4

Applying Momentum Principle

3.5  Predicting Motion of Gravitational Interacting Objects
3.6  Electric Force
3.7  Strong Interaction
3.9  Predicting Complex Systems
3.10  Determinism
3.11  Conserving Momentum
3.12  Multiparticle Systems
3.13  Collisions

5

Contact Interactions

4.1  Tarzan & the Vine
4.2  Balls and Springs
4.3  Tension Forces
4.4  Length of Interatomic Bonds
4.5  Stiffness of Bonds
4.6  Stess, Strain, Young's Modulus
4.7  Compression Forces
4.8  Friction
4.9  Speed of Sound
4.10  Derivative Form of MP
4.11  Analytical Solutions 
4.12  Analytical Expression for Speed of Sound 

6

Rate of Change of Momentum

5.1 Identifying Forces on a System 
5.2
 Statics
5.3  Finding Rate of Change of Momentum
5.4  Curving Motion
5.5  Rate of Change of Direction
5.6  Why Does the Vine Break?
5.7  Problem Solving   

7

Energy

 

 

6.1  The Energy Principle
6.2  Single Particle System
6.3  Work: Mechanical Energy Transfer

REVIEW

8

Applying The Energy Principle

6.4  Update Form of Energy Principle
6.5  Change of Rest Energy
6.7  Work Done by Nonconstant Force
6.8  Potential Energy
6.9  Gravitatiional Potential Energy
6.10  Properties of PE 
6.11  Energy and Separation 
6.12  Applying Gravitational PE

9

Internal Energy

6.13  Gravitational PE Near Earth
6.14  Electrical PE
6.15  Mass of Multiparticle System
6.17  Initial and Final Systems

7.1  PE of Macroscopic Springs
7.2  PE of Pair of Neutral Atoms 
7.3  Path Independence of PE 
7.4  Internal Energy & Thermal Energy
7.5  
Energy Transfer Due to Temperature Difference
7.6  Reflection: Forms of Energy
7.7  Power: Energy per Unit Time 
7.8  Open and Closed Systems

10

Energy Quantization

 

7.9  Choosing the System
7.10  Energy Dissipation 
7.11  "Conservative" Forces 

8.1  Photons
8.2  Electronic Energy Levels 
8.3  Effect of Temperature
8.4  Vibrational Energy Levels
8.5  Rotational Energy Levels 
8.6  Other Energy Levels
8.7  Comparing Energy Level Spacings

11

Multiparticle Systems

9.1  Motion of the Center of Mass
9.2  Separating Multiparticle System Energy
9.3  Rotational Kinetic Energy 
9.4  Point Particle System
9.5  Point Particle & Real Systems

12

Collisions

10.1  Internal Interactions
10.2  Elastic vs Inelastic Collisions
10.3  Head-On Collision of Equal Masses
10.4  Head-On Collisions of Unequal Masses 
10.5  Frame of Reference
10.6
  Scattering: 2D & 3D Collisions
10.7  Discovery of the Atomic Nucleus

11.1  Translational Angular Momentum
11.2  Rotational Angular Momentum
11.3  Translational + Rotational

13

Angular Momentum

11.4  The Angular Momentum Principle
11.5  Multiparticle Systems
11.6  Three Fundamental Principles 
11.7  Systems with Zero Torque
11.8  Systems with Nonzero Torques

14

Entropy: Limits on the Possible

12.1  Statistical Issues
12.2  Statistical Model of Solids
12.3  Thermal Equilibrium

REVIEW

15

Thermodynamics

12.4  Second Law of Thermodynamics
12.5  What is Temperature?
12.6  Specific Heat Capacity
12.7  The Boltzman Distribution

REVIEW

 

 

 

LAB SCHEDULE for Physics I

Lab Week of Topic

1. Intro to labs

2. Free fall and acceleration

3. Uniformly accelerated motion

4. Impulse

5. Uniform circular motion

6. Work-Energy Theorem

7. Simple Harmonic Motion

8. Conservation of mechanical energy

9. Moment of inertia

10. Young's Modulus

11. Air resistance